DOI QR코드

DOI QR Code

Characterization of Gibberellin Biosynthetic Gene Cluster from Fusarium proliferatum

  • Rim, Soon-Ok (School of Life Science, Kyungpook National University) ;
  • You, Young-Hyun (School of Life Science, Kyungpook National University) ;
  • Yoon, Hyeokjun (School of Life Science, Kyungpook National University) ;
  • Kim, Ye-Eun (School of Life Science, Kyungpook National University) ;
  • Lee, Jin-Hyung (School of Life Science, Kyungpook National University) ;
  • Kang, Myung Suk (National Institute of Biological Resource) ;
  • Kim, Changmu (National Institute of Biological Resource) ;
  • Seu, Young-Bae (School of Life Science, Kyungpook National University) ;
  • Kim, Jong-Guk (School of Life Science, Kyungpook National University)
  • Received : 2012.12.11
  • Accepted : 2013.01.22
  • Published : 2013.05.28

Abstract

Gibberellins (GAs) are a group of phytohormones that control many developmental processes in higher plants. We report the cloning and expression pattern of gibberellin biosynthesis genes from a new GA-producing fungus, Fusarium proliferatum (strain KGL0401). These genes sequences are deposited in the National Center for Biotechnology Information (NCBI) under accession numbers EF119831, EF119832, DQ313173, DQ313174, DQ313175, DQ313176, and DQ313177. The expression level of these genes was maximal at a 0.5 M : 0.17 M carbon : nitrogen ratio, and minimal at a 0.25 M : 0.47 M carbon : nitrogen ratio.

Keywords

References

  1. Basiacik, K. S. and N. Aksoz. 2004. Optimization of carbonnitrogen ratio for production of gibberellic acid by Pseudomonas sp. Pol. J. Microbiol. 53: 117-120.
  2. Bottini, R., F. Cassan, and P. Piccoli. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65: 497-503.
  3. Borrow, A., E. G. Brown, E. G. Jefferys, R. H. Kessell, E. C. Lloyd, P. B. Lloyd, A. Rothwell, B. Rothwell, and J. C. Swait. 1964. The kinetics of metabolism of Gibberella fujikuroi in stirred culture. Can. J. Microbiol. 10: 407-444. https://doi.org/10.1139/m64-054
  4. Carattoli, A., N. Romano, P. Ballario, G. Morelli, and G. Macino. 1991. The Neurospora crassa carotenoid biosynthetic gene (Albino-3) reveals highly conserved regions among prenyltransferases. J. Biol. Chem. 266: 5854-5859.
  5. Choi, Y. E. and W. B. Shim. 2008. Identification of genes associated with fumonisin biosynthesis in Fusarium verticillioides via proteomics and quantitative real-time PCR. J. Microbiol. Biotechnol. 18: 648-657.
  6. Chui, L., T. Chiu, J. Kakulphimp, and G. J. Tyrrell. 2008. A comparison of three real-time PCR assays for the confirmation of Neisseria gonorrhoeae following detection of N. gonorrhoeae using Roche COBAS AMPLICOR. Clin. Microbiol. Infect. 14: 473-479. https://doi.org/10.1111/j.1469-0691.2008.01950.x
  7. Hedden, P. and A. L. Phillips. 2000. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci. 5: 523-530. https://doi.org/10.1016/S1360-1385(00)01790-8
  8. Hedden, P., A. L. Phillips, M. C. Rojas, E. Carrera, and B. Tudzynski. 2002. Gibberellin biosynthesis in plants and fungi: A case of convergent evolution? J. Plant Growth Regul. 20: 319-331.
  9. Kawaide, H. 2006. Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem. 70: 583-590. https://doi.org/10.1271/bbb.70.583
  10. Lee, S. H., S. H. Kang, Y. H. Park, D. M. Min, and Y. M. Kim. 2006. Quantitative analysis of two genetically modified maize lines by real-time PCR. J. Microbiol. Biotechnol. 16: 205-211.
  11. Li, J., W. Sima, B. Ouyang, T. Wang, K. Ziaf, Z. Luo, et al. 2012. Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. J. Exp. Bot. 63: 6407-6420. https://doi.org/10.1093/jxb/ers295
  12. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}CT}$ method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  13. Macmillan, J. 2002. Occurrence of gibberellins in vascular plants, fungi, and bacteria. J. Plant Growth Regul. 20: 387-442.
  14. Malonek, S., M. C. Rojas, P. Hedden, P. Gaskin, P. Hopkin, and B. Tudzynski. 2005. Functional characterization of two cytochrome p450 monooxygenase genes, p450-1 and p450-4, of the gibberellic acid gene cluster in Fusarium proliferatum (Gibberella fujikuroi MP-D). Appl. Environ. Microbiol. 71: 1462-1472. https://doi.org/10.1128/AEM.71.3.1462-1472.2005
  15. Malonek, S., M. C. Rojas, P. Hedden, P. Hopkin, and B. Tudzynski. 2005. Restoration of gibberellins production in Fusarium proliferatum by functional complementation of enzymatic blocks. Appl. Environ. Microbiol. 71: 6014-6025. https://doi.org/10.1128/AEM.71.10.6014-6025.2005
  16. Mander, L. N. 2003. Twenty years of gibberellin research. Nat. Prod. Rep. 20: 49-69. https://doi.org/10.1039/b007744p
  17. Mende, K., V. Homann, and B. Tudzynski. 1997. The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: Isolation and expression. Mol. Gen. Genet. 255: 96-105. https://doi.org/10.1007/s004380050477
  18. O'Donnell, K. and E. Cigelnik. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7: 103-116. https://doi.org/10.1006/mpev.1996.0376
  19. Rim, S. O., J. H. Lee, W. Y. Choi, S. K. Hwang, S. J. Suh, I. J. Lee, et al. 2005. Fusarium prolifertum KGL0401 as a new gibberellin-producing fungus. J. Microbiol. Biotechnol. 15: 809-814.
  20. Rim, S. O., J. H. Lee, I. J. Lee, I. K. Rhee, and J. G. Kim. 2007. Optimization of gibberellin production by Fusarium proliferatum KGL0401 and its involvement in waito-c rice growth. J. Life Sci. 17: 120-124. https://doi.org/10.5352/JLS.2007.17.1.120
  21. Simpson, D. A., S. Feency, C. Boyle, and A. W. Stitt. 2000. Retinal VEGF mRNA measured by SYBR green I fluorescence: A versatile approach to quantitative PCR. Molec. Vis. 6: 178-183.
  22. Tsavkelova, E. A., C. Bomke, A. I. Netrusov, J. Weiner, and B. Tudzynski. 2008. Production of gibberellic acids by an orchidassociated Fusarium proliferatum strain. Fungal Genet. Biol. 45: 1393-1403. https://doi.org/10.1016/j.fgb.2008.07.011
  23. Tudzynski, B. 1999. Biosynthesis of gibberellins in Gibberella fujikuroi biomolecular aspects. Appl. Microbiol. Biotechnol. 52: 298-310. https://doi.org/10.1007/s002530051524
  24. Tudzynski, B. 2005. Gibberellin biosynthesis in fungi: Genes, enzymes, evolution, and impact on biotechnology. Appl. Microbiol. Biotechnol. 66: 597-611. https://doi.org/10.1007/s00253-004-1805-1
  25. Tudzynski, B. and K. Holter. 1998. Gibberellin biosynthetic pathway in Gibberella fujikuroi: Evidence for a gene cluster. Fungal Genet. Biol. 25: 157-170. https://doi.org/10.1006/fgbi.1998.1095
  26. Tudzynski, B., H. Kawaide, and Y. Kamiya. 1998. Gibberellin biosynthesis in Gibberella fujikuroi: Cloning and characterization of the copalyl diphosphate synthase gene. Curr. Genet. 34: 234-240. https://doi.org/10.1007/s002940050392
  27. Tudzynski, B., M. Mihlan, M. P. Rojas, P. Gaskin, and P. Hedden. 2003. Characterization of the final two genes of the gibberellins biosynthesis gene cluster of Gibberella fujikuroi. J. Biol. Chem. 278: 28635-28643. https://doi.org/10.1074/jbc.M301927200
  28. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59: 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  29. Yamaguchi, S., T. P. Sun, H. Kawaide, and Y. Kamiya. 1998. The GA2 locus of Arabidopsis thaliana encodes ent-kaurene synthase of gibberellins biosynthesis. Plant Physiol. 116: 203-213. https://doi.org/10.1104/pp.116.1.203
  30. Woitek, S., S. E. Unkles, J. R. Kinghorn, and B. Tudzynski. 1997. 3-Hydroxy-3-methylglutaryl-CoA reductase gene of Gibberella fujikuroi: Isolation and characterization. Curr. Genet. 31: 38-47. https://doi.org/10.1007/s002940050174
  31. You, Y. H., H. Yoon, S. M. Kang, J. R. Woo, Y. S. Choo, I. J. Lee, et al. 2012. Cadophora malorum Cs-8-1 as a new fungal strain producing gibberellins isolated from Calystegia soldanella. J. Basic Microbiol. 52: 1-5. https://doi.org/10.1002/jobm.201290001
  32. You, Y., H., H. Yoon, S. M. Kang, J. H. Shin, Y. S. Choo, I. J. Lee, et al. 2012. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J. Microbiol. Biotechnol. 22: 1549-1556. https://doi.org/10.4014/jmb.1205.05010

Cited by

  1. Aspergillus flavus Y2H001의 식물생육촉진과 Gibberellin A3의 생산 vol.43, pp.3, 2015, https://doi.org/10.4489/kjm.2015.43.3.200
  2. The biosynthesis of gibberellic acids by the transformants of orchid-associated Fusarium oxysporum vol.15, pp.2, 2016, https://doi.org/10.1007/s11557-015-1156-6
  3. Endophytic Paecilomyces formosus LHL10 Augments Glycine max L. Adaptation to Ni-Contamination through Affecting Endogenous Phytohormones and Oxidative Stress vol.8, pp.None, 2013, https://doi.org/10.3389/fpls.2017.00870
  4. Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola vol.5, pp.None, 2017, https://doi.org/10.7717/peerj.2841
  5. Preussia sp. BSL-10 producing nitric oxide, gibberellins, and indole acetic acid and improving rice plant growth vol.13, pp.1, 2013, https://doi.org/10.1080/17429145.2018.1432773
  6. Growth-promoting bioactivities of Bipolaris sp. CSL-1 isolated from Cannabis sativa suggest a distinctive role in modifying host plant phenotypic plasticity and functions vol.41, pp.5, 2013, https://doi.org/10.1007/s11738-019-2852-7