DOI QR코드

DOI QR Code

Monitoring the Ecology of Bacillus During Daqu Incubation, a Fermentation Starter, Using Culture-Dependent and Culture-Independent Methods

  • Yan, Zheng (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Zheng, Xiao-Wei (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Han, Bei-Zhong (College of Food Science and Nutritional Engineering, China Agricultural University) ;
  • Han, Jian-Shu (Technology Center, Shanxi Xinghuacun Fenjiu Distillery Co. Ltd.) ;
  • Nout, M.J. Robert (Laboratory of Food Microbiology, Wageningen University) ;
  • Chen, Jing-Yu (College of Food Science and Nutritional Engineering, China Agricultural University)
  • Received : 2012.11.22
  • Accepted : 2013.01.20
  • Published : 2013.05.28

Abstract

Daqu, a traditional fermentation starter, has been used to produce attractively flavored foods such as vinegar and Chinese liquor for thousands of years. Although Bacillus spp. are one of the dominant microorganisms in Daqu, more precise information is needed to reveal why and how Bacillus became dominant in Daqu, and next, to assess the impact of Bacillus sp. on Daqu and its derived products. We combined culture-dependent and culture-independent methods to study the ecology of Bacillus during Daqu incubation. Throughout the incubation, 67 presumptive Bacillus spp. isolates were obtained, 52 of which were confirmed by 16S rDNA sequencing. The identified organisms belonged to 8 Bacillus species: B. licheniformis, B. subtilis, B. amyloliquefaciens, B. cereus, B. circulans, B. megaterium, B. pumilus, and B. anthracis. A primer set specific for Bacillus and related genera was used in a selective PCR study, followed by a nested DGGE PCR targeting the V9 region of the 16S rDNA. Species identified from the PCR-DGGE fingerprints were related to B. licheniformis, B. subtilis, B. amyloliquefaciens, B. pumilus, B. benzoevorans, and B. foraminis. The predominant species was found to be B. licheniformis. Certain B. licheniformis strains exhibited potent antimicrobial activities. The greatest species diversity occurred at the Liangmei stage of Daqu incubation. To date, we lack sufficient knowledge of Bacillus distribution in Daqu. Elucidating the ecology of Bacillus during Daqu incubation would enable the impact of Bacillus on Daqu to be accessed, and the quality and stabilization of Daqu-derived products to be optimized.

Keywords

References

  1. Baril, E., L. Coroller, O. Couvert, I. Leguerinel, F. Postollec, C. Boulais, et al. 2012. Modeling heat resistance of Bacillus weihenstephanensis and Bacillus licheniformis spores as function of sporulation temperature and pH. Food Microbiol. 30: 29-36. https://doi.org/10.1016/j.fm.2011.09.017
  2. De Clerck, E., D. Gevers, K. De Ridder, and P. De Vos. 2004. Screening of bacterial contamination during gelatine production by means of denaturing gradient gel electrophoresis, focussed on Bacillus and related endospore-forming genera. J. Appl. Microbiol. 96: 1333-1341. https://doi.org/10.1111/j.1365-2672.2004.02250.x
  3. Fernandez-No, I. C., M. Guarddon, K. Bohme, A. Cepeda, P. Calo-Mata, and J. Barros-Velázquez. 2011. Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR. Food Microbiol. 28: 605-610. https://doi.org/10.1016/j.fm.2010.10.014
  4. Ferris, M., G. Muyzer, and D. Ward. 1996. Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl. Environ. Microbiol. 62: 350-356.
  5. Garbeva, P., J. A. van Veen, and J. D. van Elsas. 2003. Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45: 302-316. https://doi.org/10.1007/s00248-002-2034-8
  6. Guo, Y., Z. Yu, J. Xie, and R. Zhang. 2012. Identification of a new Bacillus licheniformis strain producing a bacteriocin-like substance. J. Microbiol. 50: 452-458. https://doi.org/10.1007/s12275-012-2051-3
  7. Haruta, S., S. Ueno, I. Egawa, K. Hashiguchi, A. Fujii, M. Nagano, et al. 2006. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 109: 79-87. https://doi.org/10.1016/j.ijfoodmicro.2006.01.015
  8. Iacumin, L., F. Cecchini, M. Manzano, M. Osualdini, D. Boscolo, S. Orlic, and G. Comi. 2009. Description of the microflora of sourdoughs by culture-dependent and culture-independent methods. Food Microbiol. 26: 128-135. https://doi.org/10.1016/j.fm.2008.10.010
  9. Inatsu, Y., N. Nakamura, Y. Yuriko, T. Fushimi, L. Watanasiritum, and S. Kawamoto. 2006. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. Lett. Appl. Microbiol. 43: 237-242. https://doi.org/10.1111/j.1472-765X.2006.01966.x
  10. Jung, J., M. Lee, and H. Chang. 2012. Evaluation of the probiotic potential of Bacillus polyfermenticus CJ6 isolated from meju, a Korean soybean fermentation starter. J. Microbiol. Biotechnol. 22: 1510-1517. https://doi.org/10.4014/jmb.1205.05049
  11. Karim, M., and M. Azin. 2011. Production of alkaline protease by entrapped Bacillus licheniformis cells in repeated batch process. J. Microbiol. Biotechnol. 21: 1250-1256. https://doi.org/10.4014/jmb.1105.05037
  12. Kim, Y., J. Y. Cho, J. H. Kuk, J. H. Moon, J. I. Cho, Y. C. Kim, and K. H. Park. 2004. Identification and antimicrobial activity of phenylacetic acid produced by Bacillus licheniformis isolated from fermented soybean, chungkook-jang. Curr. Microbiol. 48: 312-317. https://doi.org/10.1007/s00284-003-4193-3
  13. Li, X. R., E. B. Ma, L. Z. Yan, H. Meng, X. W. Du, S. W. Zhang, and Z. X. Quan. 2011. Bacterial and fungal diversity in the traditional Chinese liquor fermentation process. Int. J. Food Microbiol. 146: 31-37. https://doi.org/10.1016/j.ijfoodmicro.2011.01.030
  14. Lima, L. J. R., H. J. Kamphuis, M. J. R. Nout, and M. H. Zwietering. 2011. Microbiota of cocoa powder with particular reference to aerobic thermoresistant spore-formers. Food Microbiol. 28: 573-582. https://doi.org/10.1016/j.fm.2010.11.011
  15. Liu, G. J., T. T. Zhu, H. X. Liu, Z. X. Wen, J. H. Hu, W. J. Hao, and L. Y. Li. 2010. Isolation and identification of Bacillus licheniformis from Fen-flavor Daqu starters and the fermented grains. Liquor Making Sci. Technol. 187: 31-36 [in Chinese].
  16. Niemann, S., A. Puhler, H. V. Tichy, R. Simon, and W. Selbitschka. 1997. Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J. Appl. Microbiol. 82: 477-484. https://doi.org/10.1046/j.1365-2672.1997.00141.x
  17. Ouattara, H., B. Koffi, G. Karou, A. Sangare, S. Niamke, and J. Diopoh. 2008. Implication of Bacillus sp. in the production of pectinolytic enzymes during cocoa fermentation. World J. Microbiol. Biotechnol. 24: 1753-1760. https://doi.org/10.1007/s11274-008-9683-9
  18. Ouattara, H. G., S. Reverchon, S. L. Niamke, and W. Nasser. 2011. Molecular identification and pectate lyase production by Bacillus strains involved in cocoa fermentation. Food Microbiol. 28: 1-8. https://doi.org/10.1016/j.fm.2010.07.020
  19. Ouoba, L. I. I., C. Parkouda, B. Diawara, C. Scotti, and A. H. Varnam. 2008. Identification of Bacillus spp. from Bikalga, fermented seeds of Hibiscus sabdariffa: Phenotypic and genotypic characterization. J. Appl. Microbiol. 104: 122-131.
  20. Ryun, K. H. and J. H. Kim. 2012. Microbial dynamics of commercial makgeolli depending on the storage temperature. J. Microbiol. Biotechnol. 22: 1101-1106. https://doi.org/10.4014/jmb.1112.12063
  21. Sharma, S. K., M. P. Sharma, A. Ramesh, and O. P. Joshi. 2012. Characterization of zinc-solubilizing Bacillus isolates and their potential to influence zinc assimilation in soybean seeds. J. Microbiol. Biotechnol. 22: 352-359. https://doi.org/10.4014/jmb.1106.05063
  22. Shi, J. H., Y. P. Xiao, X. R. Li, E. B. Ma, X. W. Du, and Z. X. Quan. 2009. Analyses of microbial consortia in the starter of Fen liquor. Lett. Appl. Microbiol. 48: 478-485. https://doi.org/10.1111/j.1472-765X.2009.02554.x
  23. Shi, X. M., Y. Xu, F. Y. Cui, Y. Y. Zhong, Y. Q. Xie, and X. Xie. 2012. Study on the application of Bacillus subtilis in the production of liquor. Liquor Making Sci. Technol. 212: 49-53 [in Chinese].
  24. Velmurugan, N., M. Choi, S. S. Han, and Y. S. Lee. 2009. Evaluation of antagonistic activities of Bacillus subtilis and Bacillus licheniformis against wood-staining fungi: In vitro and in vivo experiments. J. Microbiol. 47: 385-392. https://doi.org/10.1007/s12275-009-0018-9
  25. Wang, C. L., D. J. Shi, and G. L. Gong. 2008. Microorganisms in Daqu: A starter culture of Chinese Maotai-flavor liquor. World J. Microbiol. Biotechnol. 24: 2183-2190. https://doi.org/10.1007/s11274-008-9728-0
  26. Wang, H. Y., F. Yang, C. P. Yao, L. Lin, L. Wang, Y. Lu, and K. Ji. 2009. Analysis and comparison of the metabolites produced by a strain of Bacillus subtilis by use of two different mediums. Liquor Making Sci. Technol. 186: 93-95 [in Chinese].
  27. Wang, H., F. Yang, L. Lin, L. Wang, D. Yang, Y. Lu, and K. Ji. 2011. Analysis of the metabolites of Bacillus licheniformis by solid fermentation. Liquor Making Sci. Technol. 207: 32-35 [in Chinese].
  28. Wang, H. Y., Y. B. Gao, Q. W. Fan, and Y. Xu. 2011. Characterization and comparison of microbial community of different typical Chinese liquor Daqus by PCR-DGGE. Lett Appl. Microbiol. 53: 135-140.
  29. Wang, H. Y., X. J. Zhang, L. P. Zhao, and Y. Xu. 2008. Analysis and comparison of the bacterial community in fermented grains during the fermentation for two different styles of Chinese liquor. J. Ind. Microbiol. Biotechnol. 35: 603-609. https://doi.org/10.1007/s10295-008-0323-z
  30. Wang, Y. M. and Y. L Zhao. 2002. Effects of Bacillus species on the flavour of Fenjiu liquor. Liquor Making Sci. Technol. 113: 31-32 [in Chinese].
  31. Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.
  32. Xiu, L., G. Kunliang, and Z. Hongxun. 2012. Determination of microbial diversity in Daqu, a fermentation starter culture of Maotai liquor, using nested PCR-denaturing gradient gel electrophoresis. World J. Microbiol. Biotechnol. 28: 2375-2381. https://doi.org/10.1007/s11274-012-1045-y
  33. Yang, F., H. Y. Wang, C. P. Yao, L. Lin, L. Wang, Y. Lu, and K. Ji. 2010. The difference and the similarities in metabolites of Bacillus subtilis strains by different techniques. Liquor Making Sci. Technol. 187: 104-106 [in Chinese].
  34. Yuan, C., L. F. Cui, and R. M. Wang. 2011. Study on the fermentation conditions of Bacillus licheniformis in bran starter to produce neutral protease. Liquor Making Sci. Technol. 201: 40-42 [in Chinese].
  35. Zhang, W. X., Z. Y. Wu, Q. S. Zhang, R. Wang, and H. Li. 2009. Combination of newly developed high quality Fuqu with traditional Daqu for Luzhou-flavor liquor brewing. World J. Microbiol. Biotechnol. 25: 1721-1726. https://doi.org/10.1007/s11274-009-0067-6
  36. Zhao, S., C. X. Yang, S. Dou, M. Xu, and Y. H. Liao. 2012. Research advance about microbes in Chinese liquor production. China Brew. 31: 5-10 [in Chinese].
  37. Zheng, X. W., Z. Yan, B. Z. Han, M. H. Zwietering, R. A. Samson, T. Boekhout, and M. J. R. Nout. 2012. Complex microbiota of a Chinese "Fen" liquor fermentation starter (Fen-Daqu), revealed by culture-dependent and culture-independent methods. Food Microbiol. 31: 293-300. https://doi.org/10.1016/j.fm.2012.03.008
  38. Zheng, X. W., M. R. Tabrizi, M. J. R. Nout, and B. Z. Han. 2011. Daqu - A traditional Chinese liquor fermentation starter. J. Inst. Brew. 117: 82-90. https://doi.org/10.1002/j.2050-0416.2011.tb00447.x

Cited by

  1. PCR-DGGE Analysis of the Microbial Communities in Three Different Chinese "Baiyunbian" Liquor Fermentation Starters vol.24, pp.8, 2014, https://doi.org/10.4014/jmb.1401.01043
  2. 1H NMR-based metabolomics approach for understanding the fermentation behaviour ofBacillus licheniformis : The fermentation behaviour ofB.Licheniformis vol.121, pp.3, 2015, https://doi.org/10.1002/jib.238
  3. Dynamic changes in the bacterial community in Moutai liquor fermentation process characterized by deep sequencing : Dynamic changes in the bacterial community in Moutai liquor vol.121, pp.4, 2013, https://doi.org/10.1002/jib.259
  4. Characterization of the microbial community in three types of fermentation starters used for Chinese liquor production : Microbial community in three types of fermentation starters vol.121, pp.4, 2013, https://doi.org/10.1002/jib.272
  5. Effect of temperature on microbial composition of starter culture for Chinese light aroma style liquor fermentation vol.60, pp.1, 2013, https://doi.org/10.1111/lam.12344
  6. Genome Sequence of Thermoactinomyces daqus H-18, a Novel Thermophilic Species Isolated from High-Temperature Daqu vol.3, pp.1, 2015, https://doi.org/10.1128/genomea.01394-14
  7. Lactic acid bacteria diversity of fresh rice noodles during the fermentation process, revealed by culture-dependent and culture-independent methods vol.29, pp.5, 2013, https://doi.org/10.1080/13102818.2015.1051494
  8. Evaluation of Bacillus spp. as dough starters for Adhirasam - A traditional rice based fermented food of Southern India vol.46, pp.4, 2013, https://doi.org/10.1590/s1517-838246420140409
  9. Evaluation of the effects of intrapartum antibiotic prophylaxis on newborn intestinal microbiota using a sequencing approach targeted to multi hypervariable 16S rDNA regions vol.100, pp.12, 2016, https://doi.org/10.1007/s00253-016-7410-2
  10. Analysis of the Bacterial Communities in Two Liquors of Soy Sauce Aroma as Revealed by High-Throughput Sequencing of the 16S rRNA V4 Hypervariable Region vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/6271358
  11. Metatranscriptomics Reveals the Functions and Enzyme Profiles of the Microbial Community in Chinese Nong-Flavor Liquor Starter vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01747
  12. New microbial resource: microbial diversity, function and dynamics in Chinese liquor starter vol.7, pp.None, 2013, https://doi.org/10.1038/s41598-017-14968-8
  13. Bio-Heat Is a Key Environmental Driver Shaping the Microbial Community of Medium-Temperature Daqu vol.83, pp.23, 2013, https://doi.org/10.1128/aem.01550-17
  14. Identification of Lactic Acid Bacteria in Galchi- and Myeolchi-Jeotgal by 16S rRNA Gene Sequencing, MALDI-TOF Mass Spectrometry, and PCR-DGGE vol.28, pp.7, 2018, https://doi.org/10.4014/jmb.1803.03034
  15. Microbial succession and metabolite changes during the fermentation of Chinese light aroma-style liquor : Microbiota and metabolites during the fermentation of light aroma-style liquor vol.125, pp.1, 2019, https://doi.org/10.1002/jib.544
  16. Effect of Fortified Daqu on the Microbial Community and Flavor in Chinese Strong-Flavor Liquor Brewing Process vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.00056
  17. Unraveling the Contribution of High Temperature Stage to Jiang-Flavor Daqu, a Liquor Starter for Production of Chinese Jiang-Flavor Baijiu, With Special Reference to Metatranscriptomics vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.00472
  18. Analysis of Microbial Community Structure in Traditional and Automated Moutai-Flavor Daqu vol.77, pp.2, 2019, https://doi.org/10.1080/03610470.2019.1569886
  19. The Copy Number of the spoVA2mob Operon Determines Pressure Resistance of Bacillus Endospores vol.85, pp.19, 2013, https://doi.org/10.1128/aem.01596-19
  20. Characterisation and comparison of the microflora of traditional and pure culturexiaoquduring thebaijiuliquor brewing process : Microflora of traditional and pure culturexiaoquduring thebaijiuliquor b vol.126, pp.2, 2013, https://doi.org/10.1002/jib.597
  21. First Development of a Biotechnological Ferment Based on a Consorsium of the Genus Bacillus for the Optimization of the Fermentation Process of Cassava Tubers vol.10, pp.10, 2013, https://doi.org/10.4236/aim.2020.1010041
  22. Microbiota stratification and succession of amylase‐producing Bacillus in traditional Chinese Jiuqu (fermentation starters) vol.100, pp.8, 2013, https://doi.org/10.1002/jsfa.10405
  23. Comparison of volatile and non-volatile metabolites in sufu produced with bacillus licheniformis by rapid fermentation vol.24, pp.1, 2013, https://doi.org/10.1080/10942912.2021.1901733
  24. Analysis of microbial diversity and functional differences in different types of high‐temperature Daqu vol.9, pp.2, 2013, https://doi.org/10.1002/fsn3.2068
  25. Diversity of microbiota, microbial functions, and flavor in different types of low-temperature Daqu vol.150, pp.no.pa, 2021, https://doi.org/10.1016/j.foodres.2021.110734
  26. Unraveling the correlations between bacterial diversity, physicochemical properties and bacterial community succession during the fermentation of traditional Chinese strong-flavor Daqu vol.154, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.112764
  27. Unraveling the correlations between bacterial diversity, physicochemical properties and bacterial community succession during the fermentation of traditional Chinese strong-flavor Daqu vol.154, pp.None, 2013, https://doi.org/10.1016/j.lwt.2021.112764