DOI QR코드

DOI QR Code

Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b

  • Gunam, Ida Bagus Wayan (Laboratory of Bioindustry, Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University) ;
  • Yamamura, Kenta (Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University) ;
  • Sujaya, I. Nengah (Laboratory of Bioscience and Biotechnology, Udayana University) ;
  • Antara, Nyoman Semadi (Laboratory of Bioindustry, Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University) ;
  • Aryanta, Wayan Redi (Laboratory of Bioindustry, Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University) ;
  • Tanaka, Michiko (Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University) ;
  • Tomita, Fusao (The University of the Air, Hokkaido Study Center) ;
  • Sone, Teruo (Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University) ;
  • Asano, Kozo (Laboratory of Applied Microbiology, Graduate School of Agriculture, Hokkaido University)
  • Received : 2012.07.30
  • Accepted : 2012.12.01
  • Published : 2013.04.28

Abstract

The desulfurization ability of Sphingomonas subarctica T7b was evaluated using resting and immobilized cells with dibenzothiophene (DBT), alkyl DBTs, and commercial light gas oil (LGO) as the substrates. The resting cells of S. subarctica T7b degraded 239.2 mg of the initial 250 mg of DBT/l (1.36 mM) within 24 h at $27^{\circ}C$, while 127.5 mg of 2-hydroxybiphenyl (2-HBP)/l (0.75 mM) was formed, representing a 55% conversion of the DBT. The DBT desulfurization activity was significantly affected by the aqueous-to-oil phase ratio. In addition, the resting cells of S. subarctica T7b were able to desulfurize alkyl DBTs with long alkyl chains, although the desulfurization rate decreased with an increase in the total carbon number of the alkylated DBTs. LGO with a total sulfur content of 280 mg/l was desulfurized to 152 mg/l after 24 h of reaction. Cells immobilized by entrapment with polyvinyl alcohol (PVA) exhibited a high DBT desulfurization activity, including repeated use for more than 8 batch cycles without loss of biodesulfurization activity. The stability of the immobilized cells was better than that of the resting cells at different initial pHs, higher temperatures, and for DBT biodesulfurization in successive degradation cycles. The immobilized cells were also easily separated from the oil and water phases, giving this method great potential for oil biodesulfurization.

Keywords

References

  1. Bahuguna, A., M. K. Lily, A. Munjal, R. N. Singh, and K. Dangwal. 2011. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. J. Environ. Sci. 23: 975-982. https://doi.org/10.1016/S1001-0742(10)60504-9
  2. Chang, J. H., Y. K. Chang, K. S. Cho, and H. N. Chang. 2000. Desulfurization of model oils by resting cells of Gordonia sp. Biotechnol. Lett. 22: 193-196. https://doi.org/10.1023/A:1005637013879
  3. Dursun, A. Y. and O. Tepe. 2005. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha. J. Hazard. Mater. 126: 105-111. https://doi.org/10.1016/j.jhazmat.2005.06.013
  4. Fernandes, P., P. Vidinha, T. Ferreira, H. Silvestre, J. M. S. Cabral, and D. M. F. Prazeres. 2002. Use of free and immobilized Pseudomonas putida cells for the reduction of a thiophene derivative in organic media. J. Mol. Catal. B Enzym. 19: 353-361.
  5. Gallagher, J. R., S. S. Olson, and D. C. Stanley. 1993. Microbial desulfurization of benzothiophene: A sulfur specific pathway. FEMS Microbiol. Lett. 107: 31-36. https://doi.org/10.1111/j.1574-6968.1993.tb05999.x
  6. Giuliano, M., C. Schiraldi, C. Maresca, V. Esposito, and M. D. Rosa. 2003. Immobilized Proteus mirabilis in poly(vinyl alcohol) cryogels for l (−)-carnitine production. Enzyme Microb. Technol. 32: 507-512. https://doi.org/10.1016/S0141-0229(02)00321-6
  7. Gray, K A., O. S. Pogrebinsky, G. T. Mrachko, L. Xi, D. J. Monticello, and C. H. Squires. 1996. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14: 1705-1709. https://doi.org/10.1038/nbt1296-1705
  8. Guerinik, K. and Q. Al-Mutawah. 2003. Isolation and characterization of oil-desulfurizing bacteria. World J. Microbiol. Biotechnol. 19: 941-945. https://doi.org/10.1023/B:WIBI.0000007327.72618.0f
  9. Gunam, I. B. W., Y. Yaku, M. Hirano, K. Yamamura, F. Tomita, T. Sone, and K. Asano. 2006. Biodesulfurization of alkylated forms of dibenzothiophene and benzothiophene by Sphingomonas subarctica T7b. J. Biosci. Bioeng. 101: 322-327.
  10. Guobin, S., X. Jianmin, Z. Huaiying, and L. Huizhou. 2005. Deep desulfurization of hydrodesulfurized diesel oil by Pseudomonas delafieldii R-8. J. Chem. Technol. Biotechnol. 80: 420-424. https://doi.org/10.1002/jctb.1197
  11. Hernández-Maldonado, A. J. and R. T. Yang. 2003. Desulfurization of commercial liquid fuels by selective adsorption via π- complexation with Cu(I)-Y zeolite. Ind. Eng. Chem. Res. 42: 3103-3110. https://doi.org/10.1021/ie0301132
  12. Kaufman, E. N., J. B. Harkins, and A. P. Borole. 1998. Comparison of batch stirred and electrospray reactors for biodesulfurization of dibenzothiophene in crude oil and hydrocarbon feedstocks. Appl. Biochem. Biotechnol. 73: 127-144. https://doi.org/10.1007/BF02785650
  13. Kayser, K. J., B. A. Bielaga-Jone, K. Jackowski, O. Odusan, and J. J. Kilbane II. 1993. Utilization of organosulfur compounds by axenic and mixed cultures of Rhodococcus rhodochrous IGTS8. J. Gen. Microbiol. 39: 3123-3129.
  14. Kayser, K. J., L. Cleveland, H. S. Park, J. H. Kwak, A. Kolhatkar, and J. J. Kilbane II. 2002. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl. Microbiol. Biotechnol. 59: 737-745. https://doi.org/10.1007/s00253-002-1030-8
  15. Kertesz, M. A. 1999. Riding the sulfur cycle metabolism of sulfonates and sulfate esters in Gram-negative bacteria. FEMS Microbiol. Rev. 24: 135-175.
  16. Kim, B.-H., P.-K. Shin, J.-U. Na, D.-H. Park, and S.-H. Bang. 1996. Microbial petroleum desulfurization. J. Microbiol. Biotechnol. 6: 299-308.
  17. Kim, H. Y., T. S. Kim, and A. B. H. Kim. 1991. Isolation and characterization of a dibenzothiophene degrading sulfate-reducing soil bacterium. J. Microbiol. Biotechnol. 1: 1-5.
  18. Kobayashi, M., K. Horiuchi, O. Yoshikawa, K. Hirasawa, Y. Ishii, K. Fujino, et al. 2001. Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci. Biotechnol. Biochem. 65: 298-304. https://doi.org/10.1271/bbb.65.298
  19. Konishi, J., Y. Ishii, T. Onaka, K. Okumura, and M. Suzuki. 1997. Thermophilic carbon-sulfur-bond-targeted biodesulfurization. Appl. Environ. Microbiol. 63: 3164-3169.
  20. Li, F., P. Xu, J. Feng, L. Meng, Y. Zheng, L. Luo, and C. Ma. 2005. Microbial desulfurization of gasoline in a Mycobacterium goodie X7B immobilized-cell system. Appl. Environ. Microbiol. 71: 276-281. https://doi.org/10.1128/AEM.71.1.276-281.2005
  21. Li, Q., C. Kang, and C. Zhang. 2005. Waste water produced from an oilfield and continuous treatment with an oil-degrading bacterium. Process Biochem. 40: 873-877. https://doi.org/10.1016/j.procbio.2004.02.011
  22. Lijun, X., W. Bochu, L. Zhimin, D. Chuanren, W. Qinghong, and L. Liu. 2005. Linear alkyl benzene sulfonate (LAS) degradation by immobilized Pseudomonas aeroginosa under low intensity ultrasound. Colloids Surf. B Biointerfaces 40: 25-29. https://doi.org/10.1016/j.colsurfb.2004.07.002
  23. Lu, J., T. Nakajima-Kambe, T. Shigeno, A. Ohbo, N. Nomura, and T. Nakahara. 1999. Biodegradation of dibenzothiophene and 4,6-dimethyldibenzothiophene by Sphingomonas pauchimobilis strain TZS-7. J. Biosci. Bioeng. 88: 293-299. https://doi.org/10.1016/S1389-1723(00)80012-2
  24. Luo, M. F., J. M. Xing, Z. X. Gou, S. Li, H. Z. Liu, and J. Y. Chen. 2003. Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem. Eng. J. 13: 1-6. https://doi.org/10.1016/S1369-703X(02)00078-5
  25. Maghsoudi, S., A. Kheirolomoom, M. Vossoughi, E. Tanaka, and S. Katoh. 2001. Biodesulfurization of hydrocarbon by Rhodococcus sp. strain P32C1. Biochem. Eng. J. 8: 151-156. https://doi.org/10.1016/S1369-703X(01)00097-3
  26. Matsui, T., K. Hirasawa, K. Koizumi, K. Maruhashi, and R. Kurane. 2001. Optimization of the copy of number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol. Lett. 23: 1715-1718. https://doi.org/10.1023/A:1012420902238
  27. Naito, M., T. Kawamoto, K. Fujino, M. Kobayashi, K. Maruhashi, and A. Tanaka. 2001. Long-term repeated biodesulfurization by immobilized Rhodococcus erythopolis KA2-5-1 cells. Appl. Microbiol. Biotechnol. 55: 374-378. https://doi.org/10.1007/s002530000527
  28. Noda, K., K. Watanabe, and K. Maruhashi. 2003. Isolation of a recombinant desulfurizing 4,6-dipropyl dibenzothiophene in ntetradecane. J. Biosci. Bioeng. 95: 354-360.
  29. Ohshiro, T., T. Hirata, and Y. Izumi. 1996. Desulfurization of dibenzothiophene derivates by whole cells of Rhodococcus erythopolis H-2. FEMS Microbiol. Lett. 142: 65-70. https://doi.org/10.1111/j.1574-6968.1996.tb08409.x
  30. Omori, T., L. Monna, Y. Saiki, and T. Kodama. 1992. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol. 58: 911-915.
  31. Park, S. J., I.-S. Lee, Y. K. Chang, and S. Y. Lee. 2003. Desulfurization of dibenzothiophene and diesel oil by metabolically engineered Escherichia coli. J. Microbiol. Biotechnol. 13: 578-583.
  32. Schiller, J. E. and D. R. Mathiason 1997. Separation method for coal-derived solids and heavy liquids. Anal. Chem. 49: 1225- 1228
  33. Silveira, S. T., S. Gemelli, J. Segalin, and A. Brandelli. 2012. Immobilization of keratinolytic metalloprotease from Chryseobacterium sp. strain kr6 on glutaraldehyde-activated chitosan. J. Microbiol. Biotechnol. 22: 818-825. https://doi.org/10.4014/jmb.1111.11048
  34. Szczesna-Antczak, M., T. Antczak, and S. Bielecki. 2004. Stability of extracellular proteinase productivity by Bacillus subtilis cells immobilized in PVA-cryogel. Enzyme Microb. Technol. 34: 168-176. https://doi.org/10.1016/j.enzmictec.2003.10.001
  35. Tanaka, Y., T. Matsui, J. Konishi, K. Maruhashi, and R. Kurane. 2002. Biodesulfurization of benzothiophene and dibenzothiophene by a newly isolated Rhodococcus strain. Appl. Microbiol. Biotechnol. 59: 325-328. https://doi.org/10.1007/s00253-002-0985-9
  36. Watanabe, K., K. Noda, J. Konishi, and K. Maruhashi. 2003. Desulfurization of 2,4,6,8-tetraethyl dibenzothiophene by recombinant Mycobacterium sp. strain MR65. Biotechnol. Lett. 25: 1451-1456. https://doi.org/10.1023/A:1025020003953

Cited by

  1. Characterization of a MexAB-OprM efflux system necessary for productive metabolism of Pseudomonas azelaica HBP1 on 2-hydroxybiphenyl vol.4, pp.None, 2013, https://doi.org/10.3389/fmicb.2013.00203
  2. The Study of Degradation Characteristics of Isolated Pseudomonas Sp. LKY-5 on Dibenzothiophene vol.864, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amr.864-867.136
  3. Influence of the Carbon Source on Gordonia alkanivorans Strain 1B Resistance to 2-Hydroxybiphenyl Toxicity vol.173, pp.4, 2013, https://doi.org/10.1007/s12010-014-0902-6
  4. Enhanced Dibenzothiophene Biodesulfurization by Immobilized Cells of Brevibacterium lutescens in n-Octane-Water Biphasic System vol.174, pp.6, 2014, https://doi.org/10.1007/s12010-014-1184-8
  5. Enhanced Dibenzothiophene Biodesulfurization by Immobilized Cells of Brevibacterium lutescens in n-Octane-Water Biphasic System vol.174, pp.6, 2014, https://doi.org/10.1007/s12010-014-1184-8
  6. Biodesulfurization: a mini review about the immediate search for the future technology vol.17, pp.1, 2013, https://doi.org/10.1007/s10098-014-0812-x
  7. Biocatalytic desulfurization of thiophenic compounds and crude oil by newly isolated bacteria vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00112
  8. Isolation and classification of a soil actinomycete capable of sulphur‐specific biotransformation of dibenzothiophene, benzothiophene and thianthrene vol.118, pp.1, 2015, https://doi.org/10.1111/jam.12665
  9. Thermophilic biodesulfurization and its application in oil desulfurization vol.102, pp.21, 2013, https://doi.org/10.1007/s00253-018-9342-5
  10. The approach of biodesulfurization for clean coal technologies: a review vol.16, pp.4, 2013, https://doi.org/10.1007/s13762-019-02232-7
  11. Enzymatic Desulfurization of Crude Oil and Its Fractions: A Mini Review on the Recent Progresses and Challenges vol.44, pp.6, 2013, https://doi.org/10.1007/s13369-019-03800-2
  12. Improved Efficiency of the Desulfurization of Oil Sulfur Compounds in Escherichia coli Using a Combination of Desensitization Engineering and DszC Overexpression vol.8, pp.6, 2013, https://doi.org/10.1021/acssynbio.9b00126
  13. Anammox Bacteria Immobilization Using Polyvinyl Alcohol/Sodium Alginate Crosslinked with Sodium Sulfate vol.146, pp.4, 2013, https://doi.org/10.1061/(asce)ee.1943-7870.0001658
  14. Diesel-born organosulfur compounds stimulate community re-structuring in a diesel-biodesulfurizing consortium vol.28, pp.None, 2013, https://doi.org/10.1016/j.btre.2020.e00572
  15. Kinetic modelling and process engineering aspects of biodesulfurization of liquid fuels: Review and analysis vol.14, pp.None, 2021, https://doi.org/10.1016/j.biteb.2021.100668
  16. Bioethanol production from sugarcane bagasse by Saccharomyces cerevisiae ATCC 9763 immobilized in Na-alginate vol.824, pp.1, 2013, https://doi.org/10.1088/1755-1315/824/1/012054
  17. Nanocatalysts for Oxidative Desulfurization of Liquid Fuel: Modern Solutions and the Perspectives of Application in Hybrid Chemical-Biocatalytic Processes vol.11, pp.9, 2013, https://doi.org/10.3390/catal11091131
  18. Non-hydrogen processes for simultaneous desulfurization and denitrogenation of light petroleum fuels-an elaborative review vol.28, pp.44, 2013, https://doi.org/10.1007/s11356-021-15909-9
  19. Biodesulfurization of Dibenzothiophene and Its Alkylated Derivatives in a Two-Phase Bubble Column Bioreactor by Resting Cells of Rhodococcus erythropolis IGTS8 vol.9, pp.11, 2013, https://doi.org/10.3390/pr9112064