References
- Boneca, I. G., H. de Reuse, J. C. Epinat, M. Pupin, A. Labigne, and I. Moszer. 2003. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res. 31: 1704-1714. https://doi.org/10.1093/nar/gkg250
- Brown, L. M. 2000. Helicobacter pylori: Epidemiology and routes of transmission. Epidemiol. Rev. 22: 283-297. https://doi.org/10.1093/oxfordjournals.epirev.a018040
- Bury-Mone, S., N. O. Kaakoush, C. Asencio, F. Megraud, M. Thibonnier, H. de Reuse, and G. L. Mendz. 2006. Helicobacter pylori a true microaerophile? Helicobacter 11: 296-303. https://doi.org/10.1111/j.1523-5378.2006.00413.x
- Chalk, P. A., A. D. Roberts, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 140: 2085-2092. https://doi.org/10.1099/13500872-140-8-2085
- Chang, H. T., S. W. Marcelli, A. A. Davison, P. A. Chalk, R. K. Poole, and R. J. Miles. 1995. Kinetics of substrate oxidation by whole cells and cell membranes of Helicobacter pylori. FEMS Microbiol. Lett. 129: 33-38. https://doi.org/10.1016/0378-1097(95)00130-W
- Choi, Y. W., S. A. Park, H. W. Lee, D. S. Kim, and N. G. Lee. 2008. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8: 2665-2675. https://doi.org/10.1002/pmic.200700689
- Chuang, M. H., M. S. Wu, J. T. Lin, and S. H. Chiou. 2005. Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics 5: 3895-3901. https://doi.org/10.1002/pmic.200401232
- Donelli, G., P. Matarrese, C. Fiorentini, B. Dainelli, T. Taraborelli, E. Di Campli, et al. 1998. The effect of oxygen on the growth and cell morphology of Helicobacter pylori. FEMS Microbiol. Lett. 168: 9-15. https://doi.org/10.1111/j.1574-6968.1998.tb13248.x
- Eutsey, R., G. Wang, and R. J. Maier. 2007. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst) 6: 19-26. https://doi.org/10.1016/j.dnarep.2006.08.006
- Gerrits, M. M., E. J. van der Wouden, D. A. Bax, A. A. van Zwet, A. H. van Vliet, A. de Jong, et al. 2004. Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J. Med. Microbiol. 53: 1123-1128. https://doi.org/10.1099/jmm.0.45701-0
- Huang, C. H. and S. H. Chiou. 2011. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J. Med. Sci. 27: 544-553.
- Iuchi, S. and L. Weiner. 1996. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J. Biochem. 120: 1055-1063. https://doi.org/10.1093/oxfordjournals.jbchem.a021519
- Kaakoush, N. O., C. Baar, J. Mackichan, P. Schmidt, E. M. Fox, S. C. Schuster, and G. L. Mendz. 2009. Insights into the molecular basis of the microaerophily of three Campylobacterales: A comparative study. Antonie Van Leeuwenhoek 96: 545-557. https://doi.org/10.1007/s10482-009-9370-3
- Krieg, N. R. and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40: 107-130. https://doi.org/10.1146/annurev.mi.40.100186.000543
- Marshall, B. J. and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.
- Mendz, G. L. and S. L. Hazell. 1993. Fumarate catabolism in Helicobacter pylori. Biochem. Mol. Biol. Int. 31: 325-332.
- Mendz, G. L., S. L. Hazell, and B. P. Burns. 1993. Glucose utilization and lactate production by Helicobacter pylori. J. Gen. Microbiol. 139: 3023-3028. https://doi.org/10.1099/00221287-139-12-3023
- Olczak, A. A., G. Wang, and R. J. Maier. 2005. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors. Free Radical Res. 39: 1173-1182. https://doi.org/10.1080/10715760500306729
- Olczak, A. A., R. W. Seyler Jr., J. W. Olson, and R. J. Maier. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71: 580-583. https://doi.org/10.1128/IAI.71.1.580-583.2003
- Olson, J. W. and R. J. Maier. 2002. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298: 1788-1790. https://doi.org/10.1126/science.1077123
- Park, A. M., Q. Li, K. Nagata, T. Tamura, K. Shimono, E. F. Sato, and M. Inoue. 2004. Oxygen tension regulates reactive oxygen generation and mutation of Helicobacter pylori. Free Radical Biol. Med. 36: 1126-1133. https://doi.org/10.1016/j.freeradbiomed.2004.02.001
- Park, S. A., A. Ko, and N. G. Lee. 2011. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol. 11: 96-109. https://doi.org/10.1186/1471-2180-11-96
- Pitson, S. M., G. L. Mendz, S. Srinivasan, and S. L. Hazell. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260: 258-267. https://doi.org/10.1046/j.1432-1327.1999.00153.x
- Rupprecht, M. and K. H. Schleifer. 1977. Comparative immunological study of catalases in the genus Micrococcus. Arch. Microbiol. 114: 61-66. https://doi.org/10.1007/BF00429631
- Schellhorn, H. E. 1995. Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol. Lett. 131: 113-119. https://doi.org/10.1111/j.1574-6968.1995.tb07764.x
- Smith, M. A., M. Finel, V. Korolik, and G. L. Mendz. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch. Microbiol. 174: 1-10. https://doi.org/10.1007/s002030000174
- Thompson, L. J., D. S. Merrell, B. A. Neilan, H. Mitchell, A. Lee, and S. Falkow. 2003. Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun.71: 2643-2655. https://doi.org/10.1128/IAI.71.5.2643-2655.2003
- Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D. Fleischmann, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-547. https://doi.org/10.1038/41483
- Tominaga, K., N. Hamasaki, T. Watanabe, T. Uchida, Y. Fujiwara, O. Takaishi, et al. 1999. Effect of culture conditions on morphological changes of Helicobacter pylori. J. Gastroenterol. 34 (Suppl 11): 28-31. https://doi.org/10.1007/s005350050212
- Wang, G. and R. J. Maier. 2004. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect. Immun. 72: 1391-1396. https://doi.org/10.1128/IAI.72.3.1391-1396.2004
- Wang, G., R. C. Conover, A. A. Olczak, P. Alamuri, M. K. Johnson, and R. J. Maier. 2005. Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori. Free Radical Res. 39: 1183-1191. https://doi.org/10.1080/10715760500194018
- Zeng, H., G. Guo, X. H. Mao, W. D. Tong, and Q. M. Zou. 2008. Proteomic insights into Helicobacter pylori coccoid forms under oxidative stress. Curr. Microbiol. 57: 281-286. https://doi.org/10.1007/s00284-008-9190-0
Cited by
- The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00840
- Heme binding and peroxidase activity of a secreted minicatalase vol.590, pp.24, 2013, https://doi.org/10.1002/1873-3468.12493
- HP1021 is a redox switch protein identified in Helicobacter pylori vol.49, pp.12, 2013, https://doi.org/10.1093/nar/gkab440