DOI QR코드

DOI QR Code

Global Regulation of Gene Expression in the Human Gastric Pathogen Helicobacter pylori in Response to Aerobic Oxygen Tension Under a High Carbon Dioxide Level

  • Park, Shin Ae (Department of Bioscience and Biotechnology, Sejong University) ;
  • Lee, Na Gyong (Department of Bioscience and Biotechnology, Sejong University)
  • Received : 2012.09.24
  • Accepted : 2012.12.16
  • Published : 2013.04.28

Abstract

The human gastric pathogen Helicobacter pylori (Hp) has been considered a microaerophile. However, we recently reported that, when supplied with 10% $CO_2$, Hp growth is stimulated by an atmospheric level of $O_2$, suggesting that Hp is a capnophilic aerobe. In this study, we investigated the effects of aerobic $O_2$ tension on Hp cells by comparing gene expression profiles of cultures grown under microaerobic and aerobic conditions in the presence of 10% $CO_2$. The results showed that overall differences in gene expression in Hp cells grown under the two $O_2$ conditions were predominantly growth-phase-dependent. At 6 h, numerous genes were down-regulated under the aerobic condition, accounting for our previous observation that Hp growth was retarded under this condition. At 36 h, however, diverse groups of genes involved in energy metabolism, cellular processes, transport, and cell envelope synthesis were highly up- or down-regulated under the aerobic condition, indicating a progression of the cultures from the log phase to the stationary phase. The expression of several oxidative stress-associated genes including tagD, katA, and rocF was induced in response to aerobic $O_2$ level, whereas trxA, trxB, and ahpC remained unchanged. Altogether, these data demonstrate that aerobic $O_2$ tension is not detrimental to Hp cells but stimulates Hp growth, supporting our previous finding that Hp may be an aerobic bacterium that requires a high $CO_2$ level for its growth.

Keywords

References

  1. Boneca, I. G., H. de Reuse, J. C. Epinat, M. Pupin, A. Labigne, and I. Moszer. 2003. A revised annotation and comparative analysis of Helicobacter pylori genomes. Nucleic Acids Res. 31: 1704-1714. https://doi.org/10.1093/nar/gkg250
  2. Brown, L. M. 2000. Helicobacter pylori: Epidemiology and routes of transmission. Epidemiol. Rev. 22: 283-297. https://doi.org/10.1093/oxfordjournals.epirev.a018040
  3. Bury-Mone, S., N. O. Kaakoush, C. Asencio, F. Megraud, M. Thibonnier, H. de Reuse, and G. L. Mendz. 2006. Helicobacter pylori a true microaerophile? Helicobacter 11: 296-303. https://doi.org/10.1111/j.1523-5378.2006.00413.x
  4. Chalk, P. A., A. D. Roberts, and W. M. Blows. 1994. Metabolism of pyruvate and glucose by intact cells of Helicobacter pylori studied by 13C NMR spectroscopy. Microbiology 140: 2085-2092. https://doi.org/10.1099/13500872-140-8-2085
  5. Chang, H. T., S. W. Marcelli, A. A. Davison, P. A. Chalk, R. K. Poole, and R. J. Miles. 1995. Kinetics of substrate oxidation by whole cells and cell membranes of Helicobacter pylori. FEMS Microbiol. Lett. 129: 33-38. https://doi.org/10.1016/0378-1097(95)00130-W
  6. Choi, Y. W., S. A. Park, H. W. Lee, D. S. Kim, and N. G. Lee. 2008. Analysis of growth phase-dependent proteome profiles reveals differential regulation of mRNA and protein in Helicobacter pylori. Proteomics 8: 2665-2675. https://doi.org/10.1002/pmic.200700689
  7. Chuang, M. H., M. S. Wu, J. T. Lin, and S. H. Chiou. 2005. Proteomic analysis of proteins expressed by Helicobacter pylori under oxidative stress. Proteomics 5: 3895-3901. https://doi.org/10.1002/pmic.200401232
  8. Donelli, G., P. Matarrese, C. Fiorentini, B. Dainelli, T. Taraborelli, E. Di Campli, et al. 1998. The effect of oxygen on the growth and cell morphology of Helicobacter pylori. FEMS Microbiol. Lett. 168: 9-15. https://doi.org/10.1111/j.1574-6968.1998.tb13248.x
  9. Eutsey, R., G. Wang, and R. J. Maier. 2007. Role of a MutY DNA glycosylase in combating oxidative DNA damage in Helicobacter pylori. DNA Repair (Amst) 6: 19-26. https://doi.org/10.1016/j.dnarep.2006.08.006
  10. Gerrits, M. M., E. J. van der Wouden, D. A. Bax, A. A. van Zwet, A. H. van Vliet, A. de Jong, et al. 2004. Role of the rdxA and frxA genes in oxygen-dependent metronidazole resistance of Helicobacter pylori. J. Med. Microbiol. 53: 1123-1128. https://doi.org/10.1099/jmm.0.45701-0
  11. Huang, C. H. and S. H. Chiou. 2011. Proteomic analysis of upregulated proteins in Helicobacter pylori under oxidative stress induced by hydrogen peroxide. Kaohsiung J. Med. Sci. 27: 544-553.
  12. Iuchi, S. and L. Weiner. 1996. Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J. Biochem. 120: 1055-1063. https://doi.org/10.1093/oxfordjournals.jbchem.a021519
  13. Kaakoush, N. O., C. Baar, J. Mackichan, P. Schmidt, E. M. Fox, S. C. Schuster, and G. L. Mendz. 2009. Insights into the molecular basis of the microaerophily of three Campylobacterales: A comparative study. Antonie Van Leeuwenhoek 96: 545-557. https://doi.org/10.1007/s10482-009-9370-3
  14. Krieg, N. R. and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40: 107-130. https://doi.org/10.1146/annurev.mi.40.100186.000543
  15. Marshall, B. J. and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.
  16. Mendz, G. L. and S. L. Hazell. 1993. Fumarate catabolism in Helicobacter pylori. Biochem. Mol. Biol. Int. 31: 325-332.
  17. Mendz, G. L., S. L. Hazell, and B. P. Burns. 1993. Glucose utilization and lactate production by Helicobacter pylori. J. Gen. Microbiol. 139: 3023-3028. https://doi.org/10.1099/00221287-139-12-3023
  18. Olczak, A. A., G. Wang, and R. J. Maier. 2005. Up-expression of NapA and other oxidative stress proteins is a compensatory response to loss of major Helicobacter pylori stress resistance factors. Free Radical Res. 39: 1173-1182. https://doi.org/10.1080/10715760500306729
  19. Olczak, A. A., R. W. Seyler Jr., J. W. Olson, and R. J. Maier. 2003. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect. Immun. 71: 580-583. https://doi.org/10.1128/IAI.71.1.580-583.2003
  20. Olson, J. W. and R. J. Maier. 2002. Molecular hydrogen as an energy source for Helicobacter pylori. Science 298: 1788-1790. https://doi.org/10.1126/science.1077123
  21. Park, A. M., Q. Li, K. Nagata, T. Tamura, K. Shimono, E. F. Sato, and M. Inoue. 2004. Oxygen tension regulates reactive oxygen generation and mutation of Helicobacter pylori. Free Radical Biol. Med. 36: 1126-1133. https://doi.org/10.1016/j.freeradbiomed.2004.02.001
  22. Park, S. A., A. Ko, and N. G. Lee. 2011. Stimulation of growth of the human gastric pathogen Helicobacter pylori by atmospheric level of oxygen under high carbon dioxide tension. BMC Microbiol. 11: 96-109. https://doi.org/10.1186/1471-2180-11-96
  23. Pitson, S. M., G. L. Mendz, S. Srinivasan, and S. L. Hazell. 1999. The tricarboxylic acid cycle of Helicobacter pylori. Eur. J. Biochem. 260: 258-267. https://doi.org/10.1046/j.1432-1327.1999.00153.x
  24. Rupprecht, M. and K. H. Schleifer. 1977. Comparative immunological study of catalases in the genus Micrococcus. Arch. Microbiol. 114: 61-66. https://doi.org/10.1007/BF00429631
  25. Schellhorn, H. E. 1995. Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiol. Lett. 131: 113-119. https://doi.org/10.1111/j.1574-6968.1995.tb07764.x
  26. Smith, M. A., M. Finel, V. Korolik, and G. L. Mendz. 2000. Characteristics of the aerobic respiratory chains of the microaerophiles Campylobacter jejuni and Helicobacter pylori. Arch. Microbiol. 174: 1-10. https://doi.org/10.1007/s002030000174
  27. Thompson, L. J., D. S. Merrell, B. A. Neilan, H. Mitchell, A. Lee, and S. Falkow. 2003. Gene expression profiling of Helicobacter pylori reveals a growth-phase-dependent switch in virulence gene expression. Infect. Immun.71: 2643-2655. https://doi.org/10.1128/IAI.71.5.2643-2655.2003
  28. Tomb, J. F., O. White, A. R. Kerlavage, R. A. Clayton, G. G. Sutton, R. D. Fleischmann, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-547. https://doi.org/10.1038/41483
  29. Tominaga, K., N. Hamasaki, T. Watanabe, T. Uchida, Y. Fujiwara, O. Takaishi, et al. 1999. Effect of culture conditions on morphological changes of Helicobacter pylori. J. Gastroenterol. 34 (Suppl 11): 28-31. https://doi.org/10.1007/s005350050212
  30. Wang, G. and R. J. Maier. 2004. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infect. Immun. 72: 1391-1396. https://doi.org/10.1128/IAI.72.3.1391-1396.2004
  31. Wang, G., R. C. Conover, A. A. Olczak, P. Alamuri, M. K. Johnson, and R. J. Maier. 2005. Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori. Free Radical Res. 39: 1183-1191. https://doi.org/10.1080/10715760500194018
  32. Zeng, H., G. Guo, X. H. Mao, W. D. Tong, and Q. M. Zou. 2008. Proteomic insights into Helicobacter pylori coccoid forms under oxidative stress. Curr. Microbiol. 57: 281-286. https://doi.org/10.1007/s00284-008-9190-0

Cited by

  1. The allosteric behavior of Fur mediates oxidative stress signal transduction in Helicobacter pylori vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.00840
  2. Heme binding and peroxidase activity of a secreted minicatalase vol.590, pp.24, 2013, https://doi.org/10.1002/1873-3468.12493
  3. HP1021 is a redox switch protein identified in Helicobacter pylori vol.49, pp.12, 2013, https://doi.org/10.1093/nar/gkab440