DOI QR코드

DOI QR Code

Gene Cloning and Characterization of MdeA, a Novel Multidrug Efflux Pump in Streptococcus mutans

  • Kim, Do Kyun (Department of Life Science and Biotechnology, Dongeui University) ;
  • Kim, Kyoung Hoon (Department of Life Science and Biotechnology, Dongeui University) ;
  • Cho, Eun Ji (Department of Life Science and Biotechnology, Dongeui University) ;
  • Joo, Seoung-Je (Department of Life Science and Biotechnology, Dongeui University) ;
  • Chung, Jung-Min (Department of Life Science and Biotechnology, Dongeui University) ;
  • Son, Byoung Yil (Blue-Bio Industry RIC, Dongeui University) ;
  • Yum, Jong Hwa (Department of Clinical Laboratory Science, Dongeui University) ;
  • Kim, Young-Man (Department of Food Science and Nutrition, Dongeui University) ;
  • Kwon, Hyun-Ju (Department of Life Science and Biotechnology, Dongeui University) ;
  • Kim, Byung-Woo (Department of Life Science and Biotechnology, Dongeui University) ;
  • Kim, Tae Hoon (Department of Herbal Medicinal Pharmacology, Daegu Haany University) ;
  • Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University)
  • Received : 2013.01.11
  • Accepted : 2013.01.30
  • Published : 2013.03.28

Abstract

Multidrug resistance, especially multidrug efflux mechanisms that extrude structurally unrelated cytotoxic compounds from the cell by multidrug transporters, is a serious problem and one of the main reasons for the failure of therapeutic treatment of infections by pathogenic microorganisms as well as of cancer cells. Streptococcus mutans is considered one of the primary causative agents of dental caries and periodontal disease, which comprise the most common oral diseases. A fragment of chromosomal DNA from S. mutans KCTC3065 was cloned using Escherichia coli KAM32 as host cells lacking major multidrug efflux pumps. Although E. coli KAM32 cells were very sensitive to many antimicrobial agents, the transformed cells harboring a recombinant plasmid became resistant to several structurally unrelated antimicrobial agents such as tetracycline, kanamycin, rhodamin 6G, ampicillin, acriflavine, ethidium bromide, and tetraphenylphosphonium chloride. This suggested that the cloned DNA fragment carries a gene encoding a multidrug efflux pump. Among 49 of the multidrug-resistant transformants, we report the functional gene cloning and characterization of the function of one multidrug efflux pump, namely MdeA from S. mutans, which was expressed in E. coli KAM32. Judging from the structural and biochemical properties, we concluded that MdeA is the first cloned and characterized multidrug efflux pump using the proton motive force as the energy for efflux drugs.

Keywords

References

  1. Ajdic , D., W. M. McShan, R. E. McLaughlin, G. Savic , J. Chang, M. B. Carson, et al. 2002. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc. Natl. Acad. Sci. USA 99: 14434-14439. https://doi.org/10.1073/pnas.172501299
  2. Berns, K. I. and C. A. J. Thomas. 1965. Isolation of high molecular weight DNA from Haemophilus influenzae. J. Mol. Biol. 11: 117-120.
  3. Bolhus, H., H. W. van Veen, B. Poolman, A. J. M. Dreissen, and W. N. Konings. 1997. Mechanisms of multidrug transporters. FEMS Microbiol. Rev. 21: 55-84. https://doi.org/10.1111/j.1574-6976.1997.tb00345.x
  4. Chen, J., Y. Morita, M. N. Huda, T. Kuroda, T. Mizushima, and T. Tsuchiya. 2002. VmrA, member of a novel class of$ Na^+$- coupled multidrug efflux pump from Vibrio parahaemolyticus. J. Bacteriol. 184: 572-576. https://doi.org/10.1128/JB.184.2.572-576.2002
  5. Gold, O. G., H. V. Jordan, and J. Van Houte. 1973. A selective medium for Streptococcus mutans. Arch. Oral Biol. 18: 357-364. https://doi.org/10.1016/0003-9969(73)90159-3
  6. Hawkey, P. M. 1998. The origins and molecular basis of antibiotic resistance. BMJ 317: 657-660. https://doi.org/10.1136/bmj.317.7159.657
  7. Japan Society of Chemotherapy. 1990. Standard method of Japanese Society of Chemotherapy for MIC determination by the broth microdilution method. Chemother. Tokyo 38: 103-105.
  8. Jones, R. N. 2001. Resistance patterns among nosocomial pathogens: Trends over the past few years. Chest 119: 397S- 404S. https://doi.org/10.1378/chest.119.2_suppl.397S
  9. Lennox, E. S. 1955. Transduction of linked genetic characters of host by bacteriophage P1. Virology 1: 190-206. https://doi.org/10.1016/0042-6822(55)90016-7
  10. Maruyama, F., M. Kobata, K. Kurokawa, K. Nishida, A. Sakurai, K. Nakano, et al. 2009. Comparative genomic analyses of Streptococcus mutans provide insights into chromosomal shuffling and species-specific content. BMC Genomics 10: 358. https://doi.org/10.1186/1471-2164-10-358
  11. Mitscher, L. A., S. P. Pillai, E. J. Gentry, and D. M. Shankel. 1999. Multiple drug resistance. Med. Res. Rev. 19: 477-496. https://doi.org/10.1002/(SICI)1098-1128(199911)19:6<477::AID-MED2>3.0.CO;2-W
  12. Murray, B. E. 1994. Can antibiotic resistance be controlled? N. Eng. J. Med. 330: 1229-1230. https://doi.org/10.1056/NEJM199404283301710
  13. Neu, H. C. 1992. The crisis in antibiotic resistance. Science 257: 1064-1073. https://doi.org/10.1126/science.257.5073.1064
  14. Nikaido, H. 1998. Antibiotic resistance caused by Gramnegative multidrug efflux pumps. Clin. Infect. Dis. 27: S32- S41. https://doi.org/10.1086/514920
  15. Paulsen, I. T., M. H. Brown, and R. A. Skurray. 1996. Protondependent multidrug efflux systems. Microbiol. Rev. 60: 575-608.
  16. Putman, M., L. A. Koole, H. W. van Veen, and W. N. Konings. 1999. The secondary multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672-693.
  17. Putman, M., H. W. van Veen, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672-693. https://doi.org/10.1128/MMBR.64.4.672-693.2000
  18. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467. https://doi.org/10.1073/pnas.74.12.5463
  19. Spratt, B. G. 1994. Resistance to antibiotics mediated by target alterations. Science 264: 388-393. https://doi.org/10.1126/science.8153626
  20. Tseng, T. T., K. S. Gratwick, J. Kollman, D. Park, D. H. Nies, A. Goffeau, and M. H. J. Saier. 1999. The RND permease superfamily: An ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1: 107-125.
  21. Tsuda, H., Y. Yamashita, Y. Shibata, Y. Nakano, and T. Koga. 2002. Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob. Agents Chemother. 46: 3756-3764. https://doi.org/10.1128/AAC.46.12.3756-3764.2002

Cited by

  1. The pathogenicity of the Streptococcus genus vol.32, pp.11, 2013, https://doi.org/10.1007/s10096-013-1914-9
  2. The virulence of Streptococcus mutans and the ability to form biofilms vol.33, pp.4, 2013, https://doi.org/10.1007/s10096-013-1993-7
  3. The Three Bacterial Lines of Defense against Antimicrobial Agents vol.16, pp.9, 2015, https://doi.org/10.3390/ijms160921711