DOI QR코드

DOI QR Code

Syntrophic Propionate Degradation Response to Temperature Decrease and Microbial Community Shift in an UASB Reactor

  • Ban, Qiaoying (School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Li, Jianzheng (School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Zhang, Liguo (School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Jha, Ajay Kumar (School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Zhang, Yupeng (School of Municipal and Environmental Engineering, Harbin Institute of Technology) ;
  • Ai, Binling (School of Municipal and Environmental Engineering, Harbin Institute of Technology)
  • Received : 2012.10.05
  • Accepted : 2012.10.31
  • Published : 2013.03.28

Abstract

Propionate is an important intermediate product during the methane fermentation of organic matter, and its degradation is crucial for maintaining the performance of an anaerobic digester. In order to understand the effect of temperature on propionate degradation, an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater containing propionate as a sole carbon source was introduced. Under the hydraulic retention time (HRT) of 10 h and influent propionate of 2,000 mg/l condition, propionate removal was above 94% at 30-$35^{\circ}C$, whereas propionate conversion was inhibited when temperature was suddenly decreased stepwise from $30^{\circ}C$ to $25^{\circ}C$, to $20^{\circ}C$, and then to $18^{\circ}C$. After a long-term operation, the propionate removal at $25^{\circ}C$ resumed to the value at 30- $35^{\circ}C$, whereas that at $20^{\circ}C$ and $18^{\circ}C$ was still lower than the value at $35^{\circ}C$ by 8.1% and 20.7%, respectively. Microbial community composition analysis showed that Syntrophobacter and Pelotomaculum were the major propionate-oxidizing bacteria (POB), and most POB had not changed with temperature decrease in the UASB. However, two POB were enriched at $18^{\circ}C$, indicating they were low temperature tolerant. Methanosaeta and Methanospirillum were the dominant methanogens in this UASB and remained constant during temperature decrease. Although the POB and methanogenic composition hardly changed with temperature decrease, the specific $COD_{Pro}$ removal rate of anaerobic sludge (SCRR) was reduced by 21.4%-46.4% compared with the control ($35^{\circ}C$) in this system.

Keywords

References

  1. APHA. 1995. Standard Methods for the Examination of Water and Wastewater. American Public Health Association (Ed).
  2. Ariesyady, H. D., T. Ito, K. Yoshiguchi, and S. Okabe. 2007. Phylogenetic and functional diversity of propionate-oxidizing bacteria in an UASB digester sludge. Appl. Microbiol. Biotechnol. 75: 673-683. https://doi.org/10.1007/s00253-007-0842-y
  3. Barredo, M. S. and L. M. Evison. 1991. Effect of propionate toxicity on methanogen-enriched sludge, Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl. Environ. Microbiol. 57: 1764-1769.
  4. Bassam, B. J., G. Caetano-Anollés, and P. M Gresshoff. 1991. Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal. Biochem. 196: 80-83. https://doi.org/10.1016/0003-2697(91)90120-I
  5. Boone, D. R. and M. P. Bryant. 1980. Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl. Environ. Microbiol. 40: 626-632.
  6. Chae, K. J., A. Jang, S. K. Yim, and I. S. Kim. 2008. The effects of digestion and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresour. Technol. 99: 1-6. https://doi.org/10.1016/j.biortech.2006.11.063
  7. Chen, S. and X. Dong. 2005. Proteiniphilum acetatigenes gen. nov., sp. nov., from a UASB reactor treating brewery wastewater. Int. J. Syst. Evol. Microbiol. 55: 2257-2261. https://doi.org/10.1099/ijs.0.63807-0
  8. Chen, S., X. Liu, and X. Dong. 2005. Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, propionate-oxidizing bacterium isolated from UASB reactors. Int. J. Syst. Evol. Microbiol. 55: 1319-1324. https://doi.org/10.1099/ijs.0.63565-0
  9. de Bok, F. A. M., H. J. M. Harmsen, C. M. Plugge, M. C. de Vries, A. D. L. Akkermans, W. M. de Vos, and A. J. M. Stams. 2005. The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the genus Pelotomaculum. Int. J. Syst. Evol. Microbiol. 55: 1697- 1703. https://doi.org/10.1099/ijs.0.02880-0
  10. Demirel, B. and P. Scherer. 2008. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass methane: A review. Rev. Environ. Sci. Biotechnol. 7: 173-190. https://doi.org/10.1007/s11157-008-9131-1
  11. Dhaked, R. K., C. K. Waghmare, S. I. Alam, D. V. Kamboj, and L. Singh. 2003. Effect of propionate toxicity on methanogenesis of night soil at phychrophilic temperature. Bioresour. Technol. 87: 299-303. https://doi.org/10.1016/S0960-8524(02)00227-4
  12. Ferry, J. G., P. H. Smith, and R. S. Wolfe. 1974. Methanospirillum, a new genus of methanogenic bacteria, and characterization of Methanospirillum hungatei sp. nov. Int. J. Syst. Bacteriol. 24: 465-469. https://doi.org/10.1099/00207713-24-4-465
  13. Grabowski, A., B. J. Tindall, V. Bardin, D. Blanchet, and C. Jeanthon. 2005. Petrimonas sulfuriphila gen. nov., sp. nov., a mesophilic fermentative bacterium isolated from a biodegraded oil reservoir. Int. J. Syst. Evol. Microbiol. 55: 1113-1121. https://doi.org/10.1099/ijs.0.63426-0
  14. Hajarnis, S. R. and D. R. Ranade. 1994. Effect of propionate toxicity on some methanogens at different pH values and in combination with butyrate, pp. 46-49. Proceedings of 7th International Symposium on Anaerobic Digestion.
  15. Imachi, H., Y. Sekiguchi, Y. Kamagata, S. Hanada, A. Ohashi, and H. Harada. 2002. Pelotomaculum thermopropionicum gen. nov., sp. nov., an anaerobic, thermophilic, syntrophic propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 52: 1729- 1735. https://doi.org/10.1099/ijs.0.02212-0
  16. Imachi, H., S. Sakai, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Pelotomaculum propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionateoxidizing bacterium. Int. J. Syst. Evol. Microbiol. 57: 1487- 1492. https://doi.org/10.1099/ijs.0.64925-0
  17. Keyser, M., R. C. Witthuhn, C. Lamprecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. Syst. Appl. Microbiol. 29: 77-84. https://doi.org/10.1016/j.syapm.2005.06.003
  18. Kosaka, T., S. Kato, T. Shimoyama, S. Ishii, T. Abe, and K. Watanabe. 2008. The genome of Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 18: 442-448 https://doi.org/10.1101/gr.7136508
  19. Li, J., L. Zhang, Q. Ban, A. K. Jha, and Y. Xu. 2012. Diversity and distribution of methanogenic archaea in an anaerobic baffled reactor (ABR) treating sugar refinery wastewate. J. Microbiol. Biotechnol. 23: 137-143.
  20. Li, J., Q. Ban, L. Zhang, and A. K. Jha. 2012. Syntrophic propionate degradation in anaerobic digestion: A review. Int. J. Agric. Biol. 5: 843-850.
  21. Lettinga, G., J. Field, J. Van Lier, G. Zeeman, and L. W. Huishoff Pol. 1997. Advanced anaerobic waste water treatment in the near future. Water Sci. Technol. 35(10): 5-12. https://doi.org/10.1016/S0273-1223(97)00222-9
  22. Liu, Y. and W. B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N.Y. Acad. Sci. 1125: 171-189. https://doi.org/10.1196/annals.1419.019
  23. Ma, J., L. J. Mungoni, W. Verstraete, and M. Carballa. 2009. Maximum removal rate of propionic acid as a sole carbon source in UASB reactors and the importance of the macro- and micro-nutrients stimulation. Bioresour. Technol. 100: 3477- 3482. https://doi.org/10.1016/j.biortech.2009.02.060
  24. Müller, N., P. Worm, B. Schink, A. J. M. Stams, and C. M. Plugge. 2010. Syntrophic butyrate and propionate oxidation processes: From genomes to reaction mechanisms. Environ. Microbiol. Rep. 2: 489-499. https://doi.org/10.1111/j.1758-2229.2010.00147.x
  25. Narihiro, T., T. Terada, A. Ohashi, Y. Kamagata, K. Nakamura, and Y. Sekiguchi. 2012. Quantitative detection of previously characterized syntrophic bacteria in anaerobic wastewater treatment systems by sequence-specific rRNA cleavage method. Water Res. 46: 2167-2175. https://doi.org/10.1016/j.watres.2012.01.034
  26. Nedwell, D. B. 1999. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 30: 101-111. https://doi.org/10.1111/j.1574-6941.1999.tb00639.x
  27. Okabe, S., M. Oshiki, Y. Kamagata, N. Yamaguchi, M. Toyofuku, Y. Yawata, et al. 2010. A great leap forward in microbial ecology. Microbes Environ. 25: 230-240. https://doi.org/10.1264/jsme2.ME10178
  28. Parawira, W., J. S. Read, B. Mattiasson, and L. Björnsson. 2008. Energy production from agricultural residues: High methane yields in pilot-scale two-stage anaerobic digestion. Biomass Bioenergy 32: 44-50. https://doi.org/10.1016/j.biombioe.2007.06.003
  29. Pullammanappallil, P. C., D. P. Chynoweth, G. Lyberatos, and S. A. Svoronos. 2001. Stable performance of anaerobic digestion in the presence of a high concentration propionic acid. Bioresour. Technol. 78: 165-169. https://doi.org/10.1016/S0960-8524(00)00187-5
  30. Rastogi, G., D. Ranade, T. Y. Yeole, M. S. Patole, and Y. S. Shouche. 2008. Investigation of methanogen population structure in biogas reactor by molecular characterization of methylcoenzyme M reductase A (mcrA) genes. Bioresour. Technol. 99: 5317-5326. https://doi.org/10.1016/j.biortech.2007.11.024
  31. Rincón, B., F. Raposo, R. Borja, J. M. Gonzalez, M. C. Portillo, and C. Saiz-Jimenez. 2005. Performance and microbial communities of a continuous stirred tank anaerobic reactor treating two-phase olive mill solid wastes at low organic loading rates. J. Biotechnol. 121: 534-543.
  32. Shigematsu, T., S. Era, Y. Mizuno, K. Ninomiya, Y. Kamegawa, S. Morimura, and K. Kida. 2006. Microbial community of a mesophilic propionate-degrading methanogenic consortium in chemostat cultivation analyzed based on 16S rRNA and acetate kinase genes. Appl. Microbiol. Biotechnol. 72: 401-415. https://doi.org/10.1007/s00253-005-0275-4
  33. Uyanik, S. 2003. Granule development in anaerobic baffled reactor. Turkish J. Eng. Environ. Sci. 27: 131-144.
  34. Westerholm, M., B. Müller, V. Arthurson, and A. Schnürer. 2011. Changes in the acetogenic population in a mesophilic anaerobic digester in response to increasing ammonia concentration. Microbes Environ. 26: 347-353. https://doi.org/10.1264/jsme2.ME11123
  35. Worm, P., A. J. M. Stams, X. Cheng, and C. M. Plugge. 2011. Growth- and substrate-dependent transcription of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans and Methanospirillum hungatei. Microbiology 157: 280-289. https://doi.org/10.1099/mic.0.043927-0
  36. Yamada, T., Y. Sekiguchi, H. Imachi, Y. Kamagata, A. Ohashi, and H. Harada. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl. Environ. Microbiol. 71: 7493-7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005
  37. Yamada, T., H. Imachi, A. Ohashi, H. Harada, S. Hanada, Y. Kamagata, and Y. Sekiguchi. 2007. Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int. J. Syst. Evol. Microbiol. 57: 2299-2306. https://doi.org/10.1099/ijs.0.65098-0
  38. Zhang, L., J. Li, Q. Ban, J. He, and A. K. Jha. 2012. Metabolic pathways of hydrogen production in fermentative acidogenic microflora. J. Microbiol. Biotechnol. 22: 668-673. https://doi.org/10.4014/jmb.1110.10076
  39. Zheng, D. and L. Raskin. 2000. Quantification of Methanosaeta species in anaerobic bioreactors using genus- and speciesspecific hybridization probes. Microb. Ecol. 39: 246-262.

Cited by

  1. Quantitative Analysis of Previously Identified Propionate-Oxidizing Bacteria and Methanogens at Different Temperatures in an UASB Reactor Containing Propionate as a Sole Carbon Source vol.171, pp.8, 2013, https://doi.org/10.1007/s12010-013-0465-y
  2. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors vol.99, pp.24, 2013, https://doi.org/10.1007/s00253-015-6942-1
  3. Shift of Propionate-Oxidizing Bacteria with HRT Decrease in an UASB Reactor Containing Propionate as a Sole Carbon Source vol.175, pp.1, 2015, https://doi.org/10.1007/s12010-014-1265-8
  4. Response of Syntrophic Propionate Degradation to pH Decrease and Microbial Community Shifts in an UASB Reactor vol.26, pp.8, 2016, https://doi.org/10.4014/jmb.1602.02015
  5. Analysis of propionate‐degrading consortia from agricultural biogas plants vol.5, pp.6, 2013, https://doi.org/10.1002/mbo3.386
  6. Using DNA-based stable isotope probing to reveal novel propionate- and acetate-oxidizing bacteria in propionate-fed mesophilic anaerobic chemostats vol.9, pp.1, 2013, https://doi.org/10.1038/s41598-019-53849-0