DOI QR코드

DOI QR Code

Spontaneous Release of Bacteriophage Particles by Lactobacillus rhamnosus Pen

  • Jarocki, Piotr (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin) ;
  • Podlesny, Marcin (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin) ;
  • Pawelec, Jaroslaw (Laboratory of Electron Microscopy, Department of Comparative Anatomy and Anthropology, Maria Curie-Sk odowska University) ;
  • Malinowska, Agata (Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Science) ;
  • Kowalczyk, Sylwia (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin) ;
  • Targonski, Zdzislaw (Department of Biotechnology, Human Nutrition and Food Commodities, University of Life Sciences in Lublin)
  • Received : 2012.07.20
  • Accepted : 2012.11.14
  • Published : 2013.03.28

Abstract

The identification of bacteriophage proteins on the surface of Lactobacillus rhamnosus Pen was performed by LC-MS/MS analysis. Among the identified proteins, we found a phage-derived major tail protein, two major head proteins, a portal protein, and a host specificity protein. Electron microscopy of a cell surface extract revealed the presence of phage particles in the analyzed samples. The partial sequence of genes encoding the major tail protein for all tested L. rhamnosus strains was determined with specific primers designed in this study. Next, RT-PCR analysis allowed detection of the expression of the major tail protein gene in L. rhamnosus strain Pen at all stages of bacterial growth. The transcription of genes encoding the major tail protein was also proved for other L. rhamnosus strains used in this study. The present work demonstrates the spontanous release of prophage-encoded particles by a commercial probiotic L. rhamnosus strain, which did not significantly affect the bacterial growth of the analyzed strain.

Keywords

References

  1. Ackermann, H. W. 2007. 5500 phages in the electron microscope. Arch. Virol. 152: 227-243.
  2. Brandt, K. and T. Alatossava. 2003. Specific identification of certain probiotic Lactobacillus rhamnosus strains with PCR primers based on phage-related sequences. Int. J. Food Microbiol. 84: 189-196. https://doi.org/10.1016/S0168-1605(02)00419-1
  3. Canchaya, C., G. Fournous, and H. Brussow. 2004. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53: 9-18. https://doi.org/10.1111/j.1365-2958.2004.04113.x
  4. Capra, M. L., A. Quiberoni, and J. Reinheimer. 2006. Phages of Lactobacillus casei/paracasei: Response to environmental factors and interaction with collection and commercial strains. J. Appl. Microbiol. 100: 334-342. https://doi.org/10.1111/j.1365-2672.2005.02767.x
  5. Casjens, S. 2003. Prophages and bacterial genomics: What have we learned so far? Mol. Microbiol. 49: 277-300. https://doi.org/10.1046/j.1365-2958.2003.03580.x
  6. Desiere, F., S. Lucchini, C. Canchaya, M. Ventura, and H. Brussow. 2002. Comparative genomics of phages and prophages in lactic acid bacteria. Antonie Van Leeuwenhoek 82: 73-91. https://doi.org/10.1023/A:1020676825358
  7. Durmaz, E., M. J. Miller, M. A. Azcarate-Peril, S. P. Toon, and T. R. Klaenhammer. 2008. Genome sequence and characteristics of Lrm1, a prophage from industrial Lactobacillus rhamnosus strain M1. Appl. Environ. Microbiol. 74: 4601-4609. https://doi.org/10.1128/AEM.00010-08
  8. Garcia, P., V. Ladero, and J. E. Suarez. 2003. Analysis of the morphogenetic cluster and genome of the temperate Lactobacillus casei bacteriophage A2. Arch. Virol. 148: 1051-1070. https://doi.org/10.1007/s00705-003-0008-x
  9. Holmes, R. K. and L. Barksdale. 1969. Genetic analysis of tox+ and tox- bacteriophages Corynebacterium diphtheriae. J. Virol. 3: 586-598.
  10. Jarocki, P., M. Podle ny, A. Wa ko, A. Siuda, and Z. Targo ski. 2010. Differentiation of 3 Lactobacillus rhamnosus strains: E/N, Oxy, Pen by SDS-PAGE and two-dimensional electrophoresis of surface-associated proteins. J. Microbiol. Biotechnol. 20: 558-562.
  11. Kankainen, M., L. Paulin, S. Tynkkynen, I. von Ossowski, J. Reunanen, P. Partanen, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pilli containing human-mucus binding protein. Proc. Natl. Acad. Sci. USA 106: 17193-17198. https://doi.org/10.1073/pnas.0908876106
  12. Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie 84: 499-510. https://doi.org/10.1016/S0300-9084(02)01422-0
  13. Pavlova, S. I., A. O. Kilic, S. M. Mou, and L. Tao. 1997. Phage infection in vaginal lactobacilli: An in vitro study. Infect. Dis. Obstet. Gynecol. 5: 36-44.
  14. Polak-Berecka, M., A. Wa ko, M. Kordowska-Wiater, M. Podle ny, Z. Targo ski, and A. Kubik-Komar. 2010. Optimization of medium composition for enhancing growth of Lactobacillus rhamnosus PEN using surface response methodology. Pol. J. Microbiol. 59: 113-118.
  15. Ruszczy ski, M., A. Radzikowski, and H. Szajewska. 2008. Clinical trial: Effectiveness of Lactobacillus rhamnosus (strains E N, Oxy and Pen) in the prevention of antibiotic-associated diarrhoea in children. Aliment. Pharm. Therap. 28: 154-161. https://doi.org/10.1111/j.1365-2036.2008.03714.x
  16. Sanchez, B., P. Bressollier, S. Chaignepain, J. M. Schmitter, and M. C. Urdaci. 2008. Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int. Dairy J. 19: 85-88.
  17. Savijoki, K., N. Lietzen, M. Kankainen, T. Alatossava, K. Koskenniemi, P. Varmanen, and T. A. Nyman. 2011. Comparative proteome cataloging of Lactobacillus rhamnosus strains GG and Lc705. J. Proteome Res. 10: 3460-3473. https://doi.org/10.1021/pr2000896
  18. Seo, H. S., Y. Q. Xiong, J. Mitchell, R. Seepersaud, A. S. Bayer, and P. M. Sullam. 2010. Bacteriophage lysine mediates the binding of Streptococcus mitis to human platelets through interaction with fibrinogen. PLoS Pathog. 6: e1001047. https://doi.org/10.1371/journal.ppat.1001047
  19. Strauch, E., H. Kaspar, C. Schaudinn, P. Dersch, K. Madela, C. Gewinner, S. Hertwig, J. Wecke, and B. Appel. 2001. Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl. Environ. Microbiol. 67: 5634-5642. https://doi.org/10.1128/AEM.67.12.5634-5642.2001
  20. Villion, M. and S. Moineau. 2009. Bacteriophages of Lactobacillus. Front. Biosci. 14: 1661-1683.
  21. Wang, X., Y. Kim, Q. Ma, S. H. Hong, K. Pokusaeva, J. M. Sturino, and T. K. Wood. 2010. Cryptic prophages help bacteria cope with adverse environments. Nat. Commun. 1: 147. https://doi.org/10.1038/ncomms1146
  22. Weeks, C. R. and J. J. Ferretti. 1984. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12. Infect. Immun. 46: 531-536.
  23. Weinbauer, M. G. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181. https://doi.org/10.1016/j.femsre.2003.08.001

Cited by

  1. A novel chimeric prophage vB_LdeS-phiJB from commercial Lactobacillus delbrueckii subsp. bulgaricus vol.43, pp.5, 2013, https://doi.org/10.1007/s10295-016-1739-5
  2. Complete genome sequence of Lactobacillus rhamnosus Pen, a probiotic component of a medicine used in prevention of antibiotic-associated diarrhoea in children vol.10, pp.None, 2013, https://doi.org/10.1186/s13099-018-0235-z
  3. Genomic and Proteomic Characterization of Bacteriophage BH1 Spontaneously Released from Probiotic Lactobacillus rhamnosus Pen vol.11, pp.12, 2013, https://doi.org/10.3390/v11121163