DOI QR코드

DOI QR Code

Characterization of Canthaxanthin Isomers Isolated from a New Soil Dietzia sp. and Their Antioxidant Activities

  • Venugopalan, Vijayalatha (Division of Comparative Genomics, Institute of Genomics and Integrative Biology (CSIR)) ;
  • Tripathi, Subhash K. (Division of Comparative Genomics, Institute of Genomics and Integrative Biology (CSIR)) ;
  • Nahar, Pradip (Division of Comparative Genomics, Institute of Genomics and Integrative Biology (CSIR)) ;
  • Saradhi, P. Pardha (Department of Environmental Studies, University of Delhi) ;
  • Das, Rakha H. (Guru Gobind Singh Indraprastha University) ;
  • Gautam, Hemant K. (Division of Comparative Genomics, Institute of Genomics and Integrative Biology (CSIR))
  • Received : 2012.03.14
  • Accepted : 2012.09.26
  • Published : 2013.02.28

Abstract

Canthaxanthin (cx) is a potent antioxidant that is chemically synthesized at the industrial scale and has imperative applications in the cosmetic and feed industries. An orange pigmented mesophilic bacterium, designated as K44, was isolated from soil samples of Kargil, India. Biochemical tests, 16S rRNA gene sequencing, and FAME analysis of the bacterium indicated it to belong in the genus Dietzia and is distinct from human isolates. The strain showed 98% 16S rRNA gene sequence homology with Dietzia maris DSM 43102. High-performance liquid chromatography profile of the pigments isolated from K44 showed two major peaks absorbing at 465.3 and 475 nm. The liquid chromatography-mass spectrometry (LC-MS) analysis of both these peaks revealed their m/z to be 564. The molecular weights, LC-MS/MS fragmentation patterns, and ${\lambda}_{max}$ of these fractions corresponded to all-trans- (475 nm) and 9-cis-(465.3 nm) cx isomers. The antioxidant activities of cis- and trans-cx isomers isolated from this bacterium were found to differ, where the cis-isomer showed higher free radical, superoxide radical, and reactive oxygen species scavenging activities than the alltrans- isomer, suggesting that 9-cis-cx is more effective as an antioxidant than the all-trans-cx.

Keywords

References

  1. Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Asker, D. and Y. Ohta. 2002. Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl. Microbiol. Biotechnol. 58: 743-750. https://doi.org/10.1007/s00253-002-0967-y
  3. Baker, R. T. M. 2002 Canthaxanthin in aquafeed applications: Is there any risk? Trends in Food. Sci. Technol. 12: 240-243.
  4. Bhosale, P. 2004 Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63: 351-361. https://doi.org/10.1007/s00253-003-1441-1
  5. Bose, M., A. Chander, and R. H. Das. 1993. A rapid and gentle method for the isolation of genomic DNA from mycobacteria. Nucleic Acids Res. 21: 2529-2530. https://doi.org/10.1093/nar/21.10.2529
  6. Britton, G. 1995. Structure and properties of carotenoids in relation to function. FASEB J. 9: 1551-1558. https://doi.org/10.1096/fasebj.9.15.8529834
  7. Cappuccino, J. G. and N. Sherman. 1996. Microbiology: A Laboratory Manual. The Benjamin/Cumming Publishing Company Inc., CA, USA.
  8. Chaudhury, I., S. K. Raghav, H. K. Gautam, H. R. Das, and R. H. Das 2006. Suppression of inducible nitric oxide synthase by 10-23 DNAzymes in murine macrophage. FEBS Lett. 580: 2046-2052. https://doi.org/10.1016/j.febslet.2006.03.004
  9. Das, K., L. Samanta, and G. B. N. Chainy. 2000. A modified spectrophotometric assay of superoxide dismutase using nitrite formation by superoxide radicals. Ind. J. Biochem. Biophys. 37: 201-204.
  10. De Leenheer, A. P. and H. J. Nelis. 1992. Profiling and quantitation of carotenoids by high performance liquid chromatography and photo diode array detection, pp. 251-265. In L. Packer (ed). Methods in Enzymology, Vol. 213. Academic Press, London.
  11. Dhaker, A. S., R. Marwah, R. Damodar, D. Gupta, H. K. Gautam, S. Sultana, and R. Arora. 2011. In vitro evaluation of antioxidant and radioprotective properties of a noval extremophile from mud volcano: Implications for management of radiation emergencies. Mol. Cell. Biochem. 353: 243-250. https://doi.org/10.1007/s11010-011-0792-7
  12. Duckworth, A. W., S. Grant, W. D. Grant, B. E. Jones, and D. Meijer. 1998. Dietzia natronolimnaios sp. nov., a new member of the genus Dietzia isolated from an East African soda lake. Extremophiles 2: 359-366. https://doi.org/10.1007/s007920050079
  13. Dutta, D., U. Ray Chaudhuri, and R. Chakraborty. 2005. Structure, health benefits, antioxidant property and processing and storage of carotenoids. Afr. J. Biotechnol. 4: 1510-1520.
  14. Elliott, D. R., M. Wilson, C. M. F. Buckley, and D. A. Spratt. 2005. Cultivable oral microbiota of domestic dogs. J. Clin. Microbiol. 43: 5470-5476. https://doi.org/10.1128/JCM.43.11.5470-5476.2005
  15. Gupta, A. K., R. Pathak, B. Singh, H. Gautam, R. Kumar, R. Kumar, et al. 2011. Proteomic analysis of global changes in protein expression during exposure of gamma radiation in Bacillus sp. HKG-112 isolated from saline soil. J. Microbiol Biotechnol. 21: 574-581.
  16. Ichiyama, S., K. Shimokata, and M. Tsukamura. 1989. Carotenoid pigments of genus Rhodococcus. Microbiol. Immunol. 33: 503-508 https://doi.org/10.1111/j.1348-0421.1989.tb01999.x
  17. Jones, A. L., R. J. Koerner, S. Natarajan, J. D. Perry, and M. Goodfellow. 2008 Dietzia papillomatosis sp. nov., a novel actinomycete isolated from the skin of an immunocompetent patient with confluent and reticulated papillomatosis. Int. J. Syst. Evol. Microbiol. 58: 68-72. https://doi.org/10.1099/ijs.0.65178-0
  18. Khodaiyan, F., S. H. Razavi, Z. Emam-Djomeh, S. M. A. Mousavi, and M. A. Hejazi. 2007. Effect of culture conditions on canthaxanthin production by Dietzia natronolimnaea HS-1. J. Microbiol. Biotechnol. 17: 195-201.
  19. Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163. https://doi.org/10.1093/bib/5.2.150
  20. Lee, S. M., J. G. Park, Y. H. Lee, C. G. Lee, B. S. Min, J. H. Kim, and H. K. Lee. 2004. Anti-complementary activity of triterpenoides from fruits of Zizyphus jujube. Biol. Pharm. Bull. 27: 1883-1886. https://doi.org/10.1248/bpb.27.1883
  21. Levin, G. and S. Mokady. 1994. Antioxidant activity of 9-cis compared to all-trans β-carotene in vitro. Free Radic. Biol. Med. 17: 77-82. https://doi.org/10.1016/0891-5849(94)90009-4
  22. Liaaen-Jensen, S. and A. Jensen. 1971. Quantitative determination of carotenoids in photosynthetic tissues. Methods Enzymol. 23: 586-602. https://doi.org/10.1016/S0076-6879(71)23132-3
  23. Liu, X. and T. Osawa. 2007. Cis astaxanthin and especially 9- cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 357: 187-193. https://doi.org/10.1016/j.bbrc.2007.03.120
  24. Marmur, J. and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118. https://doi.org/10.1016/S0022-2836(62)80066-7
  25. Mayilraj, S., K. Suresh, R. M. Kroppenstedt, and H. S. Saini. 2006 Dietzia kunjamensis sp. nov., isolated from the Indian Himalayas. Int. J. Syst. Evol. Microbiol, 56: 1667-1671. https://doi.org/10.1099/ijs.0.64212-0
  26. Moller, A. P., C. Biard, J. D. Blount, D. C. Houston, P. Ninni, N. Saino, and P. F. Surai. 2000. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability? Avian Poultry Biol. Rev. 11: 137-159.
  27. Munson, M. A., T. Pitt-Ford, B. Chong, A. Weightman, and W. G Wade. 2002. Molecular and cultural analysis of the microflora associated with endodontic infections. J. Dent. Res. 81: 761-766. https://doi.org/10.1177/154405910208101108
  28. Natarajan, S., D. Milne, A. L. Jones, M. Goodfellow, J. Perry, and R. J. Koerner. 2005. Dietzia strain X: A newly described actinomycete isolated from confluent and reticulated papillomatosis. Br. J. Dermatol. 153: 825-827. https://doi.org/10.1111/j.1365-2133.2005.06785.x
  29. Nelis, H. J. and A. P. De Leenheer. 1989. Reinvestigation of Brevibacterium sp. strain KY-4313 as a source of canthaxanthin. Appl. Environ. Microbiol. 55: 2505-2510.
  30. Nelis, H. J., P. Lavens, L. Moens, P. Sorgeloos, J. A. Jonckheere, G. R. Criel, and A. P. De Leenheer. 1984. cis-Canthaxanthins: Unusual carotenoids in the eggs and the reproductive system of female brine shrimp Artemia. J. Biol. Chem. 259: 6063-6066.
  31. Pathak, R., R. Singh, A. Singh, H. Gautam, A. S. Dhaker, R. Kumar, et al. 2011. Assessment of antibacterial and free radical scavenging activity in psychrophilic Arthrobacter sp. Pharmacologyonline 1: 344-355.
  32. Rainey, F. A., S. Klatte, R. M. Kroppenstedt, and E. Stackebrandt. 1995. Dietzia, a new genus including Dietzia maris comb. nov., formerly Rhodococcus maris. Int. J. Syst. Bacteriol. 45: 32-36. https://doi.org/10.1099/00207713-45-1-32
  33. Rakesh, O. D., R. Pathak, A. S. Dhaker, R. Arora, R. Kumar, R. Rajaram, and H. K. Gautam. 2011. Isolation, characterization and bioactivity of deep sea bacteria with special reference to induction of antibacterial and antioxidant metabolites following gamma irradiation. Can. J. Pure Appl. Sci. 5: 1363-1370.
  34. Silva, C., J. M. S. Cabral, and F. van Keulen. 2004. Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol. Lett. 26: 257-262. https://doi.org/10.1023/B:BILE.0000013716.20116.dc
  35. Sutcliffe, I. C. 2000. Characterization of a lipomannan lipoglycan from the mycolic acid containing actinomycete Dietzia maris. Antonie van Leeuwenhoek 78: 195-201. https://doi.org/10.1023/A:1026562610490
  36. Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152: 279-285. https://doi.org/10.1111/j.1574-6968.1997.tb10440.x
  37. Tao, L., H. Yao, and Q. Cheng. 2007. Genes from a Dietzia sp. for synthesis of C40 and C50 $\beta$-cyclic carotenoids. Gene 386: 90-97. https://doi.org/10.1016/j.gene.2006.08.006
  38. Terao, J. 1989. Antioxidant activity of $\beta$-carotene-related carotenoids in solution. Lipids 24: 659-661. https://doi.org/10.1007/BF02535085
  39. Toth, E. M., E. Hell, G. Kovacs, A. K. Borsodi, and K. Marialigeti. 2006. Bacteria isolated from the different developmental stages and larval organs of the obligate parasitic fly, Wohlfahrtia magnifica (Diptera: Sarcophagidae). Microb. Ecol. 51: 13-21. https://doi.org/10.1007/s00248-005-0090-6
  40. Veiga-Crespo, P., L. Blasco, F. R. dos Santos, M. Poza, and T. G. Villa. 2005. Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. Int. Microbiol. 8: 55-58.
  41. Venugopalan, V., N. Verma, H. K. Gautam, P. P. Saradhi, and R. H. Das. 2009. 9-cis-Canthaxanthin exhibits higher pro-apoptotic activity than all-trans-canthaxanthin isomer in THP-1 macrophage cells. Free Radic Res. 43: 100-105. https://doi.org/10.1080/10715760802616668
  42. Verma, N., R. Chakrabarti, R. H. Das, and H. K. Gautam 2012. Anti-inflammatory effects of shea butter through inhibition of Inos, Cox-2, and cytokines via the Nf-Kb pathway in Lpsactivated J774 macrophage cells. J. Complement. Integr. Med. 9: 1-11.
  43. von der Weid, I., J. M. Marques, C. D. Cunha, R. K. Lippi, S. C. C dos Santos, A. S. Rosado, et al. 2007. Identification and biodegradation potential of a novel strain of Dietzia cinnamea isolated from a petroleum-contaminated tropical soil. Syst. Appl. Microbiol. 30: 331-339. https://doi.org/10.1016/j.syapm.2006.11.001
  44. Weisburg, W. G., S. M. Barns, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  45. Yassin, A. F., H. Hupfer, and K. P. Schaal. 2006. Dietzia cinnamea sp. nov., a novel species isolated from a perianal swab of a patient with a bone marrow transplant. Int. J. Syst. Evol. Microbiol. 56: 641-645. https://doi.org/10.1099/ijs.0.63863-0
  46. Yumoto, I., A. Nakamura, H. Iwata, K. Kojima, K. Kusumoto, Y. Nodasaka, and H. Matsuyama. 2002. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int. J. Syst. Evol. Microbiol. 52: 85-90 https://doi.org/10.1099/00207713-52-1-85
  47. Zhao, W., Y. Han, B. Zhao, S. Hirota, J. Hou, and W. Xin. 1998. Effect of carotenoids on the respiratory burst of rat peritoneal macrophages. Biochem. Biophys. Acta 1381: 77-88. https://doi.org/10.1016/S0304-4165(98)00013-0

Cited by

  1. Exploitation of Reactive Oxygen Species by Fungi: Roles in Host-Fungus Interaction and Fungal Development vol.24, pp.11, 2013, https://doi.org/10.4014/jmb.1407.07072
  2. Isolation and characterization of a novel strain of genus Dietzia capable of multiple-extreme resistance vol.84, pp.3, 2013, https://doi.org/10.1134/s0026261715030054
  3. Thermophilic and alkaliphilic Actinobacteria : biology and potential applications vol.6, pp.None, 2013, https://doi.org/10.3389/fmicb.2015.01014
  4. Draft Genome Sequence of Dietzia maris DSM 43672, a Gram-Positive Bacterium of the Mycolata Group vol.4, pp.3, 2013, https://doi.org/10.1128/genomea.00542-16
  5. The effects of canthaxanthin on porcine oocyte maturation and embryo development in vitro after parthenogenetic activation and somatic cell nuclear transfer vol.51, pp.6, 2016, https://doi.org/10.1111/rda.12748
  6. Canthaxanthin: From molecule to function vol.61, pp.6, 2013, https://doi.org/10.1002/mnfr.201600469
  7. Terrestrial Microorganisms: Cell Factories of Bioactive Molecules with Skin Protecting Applications vol.24, pp.9, 2013, https://doi.org/10.3390/molecules24091836
  8. Improved Carotenoid Processing with Sustainable Solvents Utilizing Z-Isomerization-Induced Alteration in Physicochemical Properties: A Review and Future Directions vol.24, pp.11, 2013, https://doi.org/10.3390/molecules24112149
  9. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution vol.9, pp.8, 2013, https://doi.org/10.3390/plants9081039
  10. Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction vol.27, pp.1, 2013, https://doi.org/10.3390/molecules27010029