DOI QR코드

DOI QR Code

Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System

  • Yoon, Shin Ah (Division of Biotechnology, The Catholic University of Korea) ;
  • Jung, Jihye (Division of Biotechnology, The Catholic University of Korea) ;
  • Park, Seongsoon (Department of Chemistry, Center for NanoBio Applied Technology, Institute of Basic Sciences, Sungshin Women's University) ;
  • Kim, Hyung Kwoun (Division of Biotechnology, The Catholic University of Korea)
  • 투고 : 2012.09.24
  • 심사 : 2012.10.18
  • 발행 : 2013.02.28

초록

The aldo-keto reductases catalyze reduction reactions using various aliphatic and aromatic aldehydes/ketones. Most reductases require NADPH exclusively as their cofactors. However, NADPH is much more expensive and unstable than NADH. In this study, we attempted to change the five amino acid residues that interact with the 2'-phosphate group of the adenosine ribose of NADPH. These residues were selected based on a docking model of the YOL151W reductase and were substituted with other amino acids to develop NADH-utilizing enzymes. Ten mutants were constructed by site-directed mutagenesis and expressed in Escherichia coli. Among them, four mutants showed higher reductase activities than wild-type when using the NADH cofactor. Analysis of the kinetic parameters for the wild type and mutants indicated that the $k_{cat}/K_{m}$ value of the Asn9Glu mutant toward NADH increased 3-fold. A docking model was used to show that the carboxyl group of Glu 9 of the mutant formed an additional hydrogen bond with the 2'-hydroxyl group of adenosine ribose. The Asn9Glu mutant was able to produce (R)-ethyl-4-chloro-3-hydroxyl butanoate rapidly when using the NADH regeneration system.

키워드

참고문헌

  1. Banta, B., B. A. Swanson, S. Wu, A. Jarnagin, and S. Anderson. 2002. Alteration of the specificity of the cofactorbinding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase A. Protein Eng. 15: 131-140. https://doi.org/10.1093/protein/15.2.131
  2. Benvenga, S., A. Amato, M. Calvani, and F. Trimarchi. 2004. Effects of carnitine on thyroid hormone action. Ann. NY Acad. Sci. 1033: 158-167. https://doi.org/10.1196/annals.1320.015
  3. Bubner, P., M. Klimacek, and B. Nidetzky. 2008. Structureguided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). FEBS Lett. 582: 233-237 https://doi.org/10.1016/j.febslet.2007.12.008
  4. Campbell, E., I. R. Wheeldon, and S. Banta. 2010. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Biotechnol. Bioeng. 107: 763-774. https://doi.org/10.1002/bit.22869
  5. Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1- propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193. https://doi.org/10.1007/s00253-010-2442-5
  6. Colucci, S., G. Mori, S. Vaira, G. Brunetti, G. Greco, L. Mancini, et al. 2005. L-Carnitine and isovaleryl L-carnitine fumarate positively affect human osteoblast proliferation and differentiation in vitro. Calcif. Tissue Int. 76: 458-465. https://doi.org/10.1007/s00223-004-0147-4
  7. Ellis, E. M. 2002. Microbial aldo-keto reductases. FEMS Microbiol. Lett. 216: 123-131. https://doi.org/10.1111/j.1574-6968.2002.tb11425.x
  8. Ferranri, R., E. Merli, G. Cicchitelli, D. Mele, A. Fucili, and C. Ceconi. 2004. Therapeutic effects of L-carnitine and propionyl- L-carnitine on cardiovascular diseases: A review. Ann. NY Acad. Sci. 1033: 79-91. https://doi.org/10.1196/annals.1320.007
  9. Goldberg, K., K. Schroer, S. Lütz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols-part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-248. https://doi.org/10.1007/s00253-007-1002-0
  10. Jung, J., H. J. Park, K. N. Uhm, D. Kim, and H. K. Kim. 2010, Asymmetric synthesis of (S)-ethyl-4-chloro-3-hydroxy butanoate using a Saccharomyces cerevisiae reductase: Enantioselectivity and enzyme-substrate docking studies. Biochim. Biophys. Acta 1804: 1841-1849. https://doi.org/10.1016/j.bbapap.2010.06.011
  11. Jung, J., S. Park, and H. K. Kim. 2012. Synthesis of a chiral alcohol using a rationally designed Saccharomyces cerevisiae reductase and a NADH cofactor regeneration system. J. Mol. Catal. B Enzym. 84: 15-21. https://doi.org/10.1016/j.molcatb.2012.01.016
  12. Kamitori, S., A. Iguchi, A. Ohtaki, M. Yamada, and K. Kita. 2005. X-Ray structures of NADPH-dependent carbonyl reductase from Sporobolomyces salmonicolor provide insights into stereoselective reduction of carbonyl compounds. J. Mol. Biol. 352: 551-558. https://doi.org/10.1016/j.jmb.2005.07.011
  13. Katzberg, M., N. Skorupa-Parachin, M. F. Gorwa-Grauslund, and M. Beratau. 2010. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ- diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Int. J. Mol. Sci. 11: 1735-1758. https://doi.org/10.3390/ijms11041735
  14. Monti, D., G. Ottolina, G. Carrea, and S. Riva. 2011. Redox reactions catalyzed by isolated enzymes. Chem. Rev. 111: 4111-4140. https://doi.org/10.1021/cr100334x
  15. Moore, J. C., D. J. Pollard, B. Kosjek, and P. N. Devine. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res. 40: 1412-1419. https://doi.org/10.1021/ar700167a
  16. Ni, Y., C. X. Li, H. M. Ma, J. Zhang, and J. H. Xu. 2011. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity. Appl. Microbiol. Biotechnol. 89: 1111-1118. https://doi.org/10.1007/s00253-010-2941-4
  17. Park, H. J., J. Jung, H. J. Choi, K. N. Uhm, and H. K. Kim. 2010. Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. J. Microbiol. Biotechnol. 20: 1300-1306. https://doi.org/10.4014/jmb.1003.03025
  18. Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444. https://doi.org/10.1016/j.jbiotec.2007.08.003
  19. Wang, J., P. Cieplak, and P. A. Kollman. 2000. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 21: 1049-1074. https://doi.org/10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F
  20. Wang, J., R. M. Wolf, J. W. Caldwell. P. A. Kollman, and D. A. Case. 2004. Development and testing of general amber force field. J. Comput. Chem. 25: 1157-1174. https://doi.org/10.1002/jcc.20035
  21. Weckbecker, A., H. Gröger, and W. Hummel. 2010. Regeneration of nicotinamide coenzymes: Principles and applications for the synthesis of chiral compounds. Adv. Biochem. Eng. Biotechnol. 120: 195-242.
  22. Yamamoto, H., A. Matsuyama, and Y. Kabayashi. 2002. Synthesis of ethyl (R)-4-chloro-3-hydroxybutanoate with recombinant Escherichia coli cells expressing (S)-specific secondary alcohol dehydrogenase. Biosci. Biotechnol. Biochem. 66: 925-927. https://doi.org/10.1271/bbb.66.925
  23. Ye, Q., P. Ouyang, and H. Ying. 2011. A review - biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: Recent advances and future perspectives. Appl. Microbiol. Biotechnol. 89: 513-522. https://doi.org/10.1007/s00253-010-2942-3

피인용 문헌

  1. Development of a Bioconversion System Using Saccharomyces cerevisiae Reductase YOR120W and Bacillus subtilis Glucose Dehydrogenase for Chiral Alcohol Synthesis vol.23, pp.10, 2013, https://doi.org/10.4014/jmb.1305.05030
  2. Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles vol.25, pp.11, 2013, https://doi.org/10.4014/jmb.1507.07007