DOI QR코드

DOI QR Code

Lactobacillus acidophilus Strain Suppresses the Transcription of Proinflammatory-Related Factors in Human HT-29 Cells

  • Chen, Kun (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Liang, Nailong (Medical Institute, Liaocheng Vocational and Technical College) ;
  • Luo, Xuegang (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology) ;
  • Zhang, Tong-Cun (Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, College of Bioengineering, Tianjin University of Science and Technology)
  • Received : 2012.08.30
  • Accepted : 2012.09.04
  • Published : 2013.01.28

Abstract

Previous studies have shown that lactic acid bacteria can inhibit inflammatory responses, but the mechanisms are very little known. In this study, transaction and expression of three proinflammatory factors, iNOS, PTGS-2, and IL8, which are closely related to the inflammatory response, were investigated by luciferase reporter assay and RTPCR in HT-29 cells treated by Lactobacillus acidophilus. The results showed that the live L. acidophilus sharply down-regulated the transcription of these three genes. Because there was a NF-${\kappa}B$ binding site located at -265 bp, -225 bp, and -95 bp upstream of the iNOS, PTGS-2, and IL8 promoters, respectively, we further addressed the effects of NF-${\kappa}B$ on transaction of the three promoters by cotransfection. As was expected, NF-${\kappa}Bs$ remarkably upregulated the activity of the reporter gene and, no effect of NF-${\kappa}B$s on IL-8 promoter transaction was found after NF-${\kappa}B$ binding site mutation of the IL8 promoter in HT-29 cells. In conclusion, the live L. acidophilus decreased the transcriptional activity of NF-${\kappa}B$ and, in turn, inhibited the transaction of NF-${\kappa}B$ on the three proinflammatory factors mentioned above.

Keywords

References

  1. Angulo, S., M. Llopis, M. Antolín, M. Gironella, M. Sans, J. R. Malagelada, et al. 2006. Lactobacillus casei prevents the upregulation of ICAM-1 expression and leukocyte recruitment in experimental colitis. Am. J. Physiol. Gastrointest. Liver Physiol. 291: 1155-1162. https://doi.org/10.1152/ajpgi.00446.2005
  2. Baeuerle, P. A. and D. Baltimore. 1996. NF-kappa B: ten years after. Cell 87: 13-20. https://doi.org/10.1016/S0092-8674(00)81318-5
  3. Bai, A. P. and Q. Ouyang. 2006. Probiotics and inflammatory bowel diseases. Postgrad. Med. J. 82: 376-382. https://doi.org/10.1136/pgmj.2005.040899
  4. Beinke, S. and S. C. Ley. 2004. Functions of NF-$\kappa$B1 and NFeB2 in immune cell biology. Biochem. J. 382: 393-409. https://doi.org/10.1042/BJ20040544
  5. Bharrhan, S., K. Chopra, S. K. Arora, J. S. Toor, and P. Rishi. 2012. Down-regulation of NF-$\kappa$B signalling by polyphenolic compounds prevents endotoxin-induced liver injury in a rat model. Innate Immun. 18: 70-79. https://doi.org/10.1177/1753425910393369
  6. Chung, Y. W., J. H. Choi, T. Y. Oh, C. S. Eun, and D. S. Han. 2008. Lactobacillus casei prevents the development of dextran sulfate sodium-induced colitis in toll-like receptor 4 mutant mice. Clin. Exp. Immunol. 151: 182-189.
  7. Collins, M. P. and G. R. Gibson. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69: S1052-S1057.
  8. Feldmann, M. and R. N. Maini. 2001. Anti-TNFa therapy of rheumatoid arthritis: What have we learned? Annu. Rev. Immunol. 19:163-196. https://doi.org/10.1146/annurev.immunol.19.1.163
  9. Girardin, S. E., J. P. Hugot, and P. J. Sansonetti. 2003. Lessons from Nod2 studies: towards a link between Crohn's disease and bacterial sensing. Trends Immunol. 24: 652-658. https://doi.org/10.1016/j.it.2003.10.007
  10. Hu, D. E., Y. Hori, and T. P. Fan. 1993. Interleukin-8 stimulates angiogenesis in rats. Inflamm. 17: 135-143. https://doi.org/10.1007/BF00916100
  11. Hwang, D. 1992. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J. Biol. Chem. 267: 25934-25938.
  12. Jones, S. E. and J. Versalovic. 2009. Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol. 9: 35. https://doi.org/10.1186/1471-2180-9-35
  13. Kim, D. W., S. B. Cho, C. H. Yun, H. Y. Jeong, W. T. Chung, C. W. Choi, et al. 2007. Induction of cytokines and nitric oxide in murine macrophages stimulated with enzymatically digested Lactobacillus strains. J. Microbiol. 45: 373-378.
  14. Kopp, E. B. and S. Ghosh. 1995. NF-kappa B and Rel proteins in innate immunity. Adv. Immunol. 58: 1-27. https://doi.org/10.1016/S0065-2776(08)60618-5
  15. Liu, S. F., X. Ye, and A. B. Malik. 1999. Inhibition of NFkappaB activation by pyrrolidine dithiocarbamate prevents in vivo expression of proinflammatory genes. Circulation 100: 1330-1337. https://doi.org/10.1161/01.CIR.100.12.1330
  16. Matarese, L. E, D. L. Seidner, and E. Steiger. 2003. The Role of Probiotics in Gastrointestinal Disease. Nutr. Clin. Pract. 18: 507-516. https://doi.org/10.1177/0115426503018006507
  17. Madden, J. A. and J. O. Hunter. 2002. A review of the role of the gut microflora in irritable bowel syndrome and the effects of probiotics. Br. J. Nutr. 88: S67-S72. https://doi.org/10.1079/BJN2002631
  18. Madrid, L.V., C. Y. Wang, D. C. Guttridge, A. J. Schottelius, A. S. Baldwin Jr., and M. W. Mayo. 2000. Akt Suppresses Apoptosis by Stimulating the Transactivation Potential of the RelA/p65 Subunit of NF-$\kappa$B. Mol. Cell. Biol. 20: 1626-1638. https://doi.org/10.1128/MCB.20.5.1626-1638.2000
  19. Masferrer, J. L., B. S. Zweifel, P. T. Manning, S. D. Hauser, K. M. Leahy, W. G. Smith, et al. 1994. Selective inhibition of inducible cyclooxygenase 2 in vivo is anti-inflammatory and nonulcerogenic. Proc. Nati. Acad. Sci. USA 91: 3228-3232. https://doi.org/10.1073/pnas.91.8.3228
  20. Mitsuyama, K., A. Toyonaga, and M. Sata. 2002. Intestinal microflora as a therapeutic target in inflammatory bowel disease. J. Gastroenterol. 37: 73-77.
  21. Obermeier, F., N. Dunger, L. Deml, H. Herfarth, J. Scholmerich, and W. Falk. 2002. CpG motifs of bacterial DNA exacerbate colitis of dextran sulfate sodium-treated mice. Eur. J. Immunol. 32: 2084-2092. https://doi.org/10.1002/1521-4141(200207)32:7<2084::AID-IMMU2084>3.0.CO;2-Q
  22. Pahl, H. L. 1999. Activators and target genes of Rel/NF-$\kappa$B transcription factors. Oncogene 18: 6853-6866. https://doi.org/10.1038/sj.onc.1203239
  23. Peran, L., D. Camuesco, M. Comalada, E. Bailon, A. Henriksson, J. Xaus, et al. 2007. A comparative study of the preventative effects exerted by three probiotics, Bifidobacterium lactis, Lactobacillus casei and Lactobacillus acidophilus, in the TNBS model of rat colitis. J. Appl. Microbiol 103: 836-844. https://doi.org/10.1111/j.1365-2672.2007.03302.x
  24. Rishi, P., S. Bharrhan, G. Singh, and I. P. Kaur. 2011. Effect of Lactobacillus plantarum and L-arginine against endotoxininduced liver injury in a rat model. Life Sci. 89:847-853. https://doi.org/10.1016/j.lfs.2011.09.007
  25. Siebenlist, U., G. Franzoso, and K. Brown. 1994. Structure, regulation and function of NF-$\kappa$B. Annu. Rev. Cell Biol. 10: 405-455. https://doi.org/10.1146/annurev.cb.10.110194.002201
  26. Spitzer, J. A., M. Zheng, J. K. Kolls, C. Vande Stouwe, and J. J. Spitzer. 2002. Ethanol and LPS modulate NF-kappaB activation, inducible NO synthase and COX-2 gene expression in rat liver cells in vivo. Front. Biosci. 7: 99-108. https://doi.org/10.2741/spitzer
  27. Taranto, M. P., M. Medici, G. Perdigon, A. P. Ruiz Holgado, and G. F. Valdez. 1998. Evidence for hypoglycemic effect of Lactobacillus reuteri in hypercholesterolemic mice. J. Dairy. Sci. 81: 2336-2340. https://doi.org/10.3168/jds.S0022-0302(98)70123-7
  28. Titheradge, M. A. 1999. Nitric oxide in septic shock. Biochem. Biophys. Acta. 1411: 437-455.
  29. Vane, J. R., J. A. Mitchell, I. Appleton, A. Tomlinson, D. Bishop-Bailey, J. Croxtall, and D. A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric oxide synthase in inflammation. Proc. Nati. Acad. Sci. USA 91: 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  30. Xie, Q. and C. Nathan. 1994. The high-output nitric oxide pathway: Role and regulation. J. Leukoc. Biol. 56: 576-582.
  31. Zamora, R., Y. Vodovotz, and T. R. Billiar. 2000. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med. 6: 347-373.

Cited by

  1. Probiotic and anti-inflammatory attributes of an isolate Lactobacillus helveticus NS8 from Mongolian fermented koumiss vol.15, pp.None, 2015, https://doi.org/10.1186/s12866-015-0525-2
  2. Lactobacillus delbrueckii subsp lactis CIDCA 133 modulates response of human epithelial and dendritic cells infected with Bacillus cereus. vol.7, pp.5, 2013, https://doi.org/10.3920/bm2015.0191
  3. Two Lactobacillus Species Inhibit the Growth and α-Toxin Production of Clostridium perfringens and Induced Proinflammatory Factors in Chicken Intestinal Epithelial Cells in Vitro vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.02081
  4. Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMA- Differentiat vol.19, pp.4, 2013, https://doi.org/10.22074/cellj.2018.4447
  5. Turmeric Extract: Potential Use as a Prebiotic and Anti-Inflammatory Compound? vol.74, pp.3, 2013, https://doi.org/10.1007/s11130-019-00733-x
  6. Anti-proliferative and Anti-metastatic Potential of High Molecular Weight Secretory Molecules from Probiotic Lactobacillus Reuteri Cell-Free Supernatant Against Human Colon Cancer Stem-Like Cells (HT2 vol.26, pp.4, 2013, https://doi.org/10.1007/s10989-020-10049-z
  7. Effects of extraction methods on the digestibility, cytotoxicity, prebiotic potential and immunomodulatory activity of taro (Colocasia esculenta) water-soluble non-starch polysaccharide vol.121, pp.None, 2013, https://doi.org/10.1016/j.foodhyd.2021.107068