Hsp90 저해기전을 가진 천연물들의 최근 연구동향

Recent Advances on the Study of Hsp90 Inhibitory Natural Products

  • Oh, Yeon Il (Department of Life and Nanopharmaceutical Science & Department of Pharmacy, College of Pharmacy, Kyung Hee University) ;
  • Kim, Nan A (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University) ;
  • Kim, Ye Hyun (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University) ;
  • Lee, Tae Hoon (Department of Oriental Pharmaceutical Science & Kyung Hee East-West Pharmaceutical Research Institute, Kyung Hee University) ;
  • Lee, Yong Sup (Department of Life and Nanopharmaceutical Science & Department of Pharmacy, College of Pharmacy, Kyung Hee University)
  • 투고 : 2013.07.01
  • 심사 : 2013.09.16
  • 발행 : 2013.09.30

초록

Heat shock protein 90 (Hsp90) is a molecular chaperone that assists protein folding and contributes to the stability of various proteins. It also stabilizes a number of proteins involved in tumor growth to consider it as a promising target for the treatment of cancer. Natural products have been a rich source of agents of value in medicine, therefore discovering lead compounds from them is one of important strategy in the drug development. In this regard, geldanamycin, radicicol, novobiocin and celastrol have been utilized as leads for the development of Hsp90 inhibitory anticancer agents. This review summerizes recent findings of natural products as Hsp90 inhibitiors. The Hsp90 inhibitory activities, mode of actions on Hsp90 and cytotoxicities on human cancer cell lines of natural products including bulgarialactone B, curcumin, (-)-gambogic acid, quercetin, sansalvamide A, silybin, and withaferin A were discussed.

키워드

참고문헌

  1. Pearl, L. H. and Prodromou, C. (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu. Rev. Biochem. 75: 271-294. https://doi.org/10.1146/annurev.biochem.75.103004.142738
  2. Gimnez Ortiz, A. and Montalar Salcedo, J. (2010) Heat shock proteins as targets in oncology. Clin. Transl. Oncol. 12: 166-173. https://doi.org/10.1007/s12094-010-0486-8
  3. Pearl, L. H., Prodromou, C. and Workman, P. (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410: 439-453. https://doi.org/10.1042/BJ20071640
  4. Fukuyo, Y., Hunt, C. R. and Horikoshi, N. (2010) Geldanamycin and its anti-cancer activities. Cancer Lett. 290: 24-35. https://doi.org/10.1016/j.canlet.2009.07.010
  5. Uehara, Y., Hori, M., Takeuchi, T. and Umezawa, H. (1986) Phenotypic change from transformed to normal induced by benzoquinonoid ansamycins accompanies inactivation of p60src in rat kidney cells infected with rous sarcoma virus. Mol. Cell. Biol. 6: 2198-2206.
  6. Jez, J. M., Chen, C., Rastelli, G., Stroud, R. M. and Santi, D. V. (2003) Crystal structure and molecular modeling of 17- DMAG in complex with human Hsp90. Chem. Biol. 10: 361-368. https://doi.org/10.1016/S1074-5521(03)00075-9
  7. Solit, D. B. (2008) Phase II trial of 17-allylamino-17- demethoxygeldanamycin in patients with metastatic melanoma. Clin. Cancer Res. 40: 8302-8307.
  8. Amolins, M. W. and Blagg, B. S. J. (2009) Natural product inhibitors of Hsp90: Potential leads for drug discovery. Mini- Rev. Medi. Chem. 9: 140-152 https://doi.org/10.2174/138955709787316056
  9. Hartl, F. U. and Hayer-Hartl, M. (2002) Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  10. Buchner, J. (1999) Hsp90 & Co. a holding for folding. Trends Biochem. Sci. 24: 136-142. https://doi.org/10.1016/S0968-0004(99)01373-0
  11. Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: Cellular functions and molecular mechanism. Cell. Mol. Life Sci. 62: 670-684. https://doi.org/10.1007/s00018-004-4464-6
  12. Blagg, B. S. J. and Kerr, T. D. (2006) Hsp90 inhibitors: Small molecules that transform the Hsp90 protein folding machinery into a catalyst for protein degradation Med. Res. Rev. 26: 310-338. https://doi.org/10.1002/med.20052
  13. Schlesinger, M. J. (1994) How the cell copes with stress and the function of heat shock proteins. Pediatr. Res. 36: 1-6. https://doi.org/10.1203/00006450-199407001-00001
  14. 한지숙 (2007) 항암제 및 퇴행성 신경질환 치료제로써의 Hsp90 억제제 개발 동향, Biochemistry and Molecular Biology News 12월호. 1-6.
  15. Donnelly, A. and Blagg, B. S. (2008) Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr. Med. Chem. 15: 2702-2717. https://doi.org/10.2174/092986708786242895
  16. Karapanagiotou, E. M., Syrigos, K. and Saif, M. W. (2009) Heat shock protein inhibitors and vaccines as new agents in cancer treatment. Expert Opin. Investig. Drugs. 18: 161-174. https://doi.org/10.1517/13543780802715792
  17. Pratt, W. B., Galigniana, M. D., Harrell, J. M. and DeFranco, D. B. (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16: 857-872. https://doi.org/10.1016/j.cellsig.2004.02.004
  18. Zhang, H. and Burrows, F. (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J. Mol. Med. 82: 488-499.
  19. Adams, J. and Elliot, P. J. (2000) New agents in cancer clinical trials. Oncogene 19: 6687-6892. https://doi.org/10.1038/sj.onc.1204088
  20. Neckers, L. and Ivy, S. P. (2003) Heat shock protein 90. Curr. Opin. Oncol. 15: 419-424. https://doi.org/10.1097/00001622-200311000-00003
  21. Neckers, L. and Neckers, K. (2002) Heat-shock protein 90 inhibitors as novel cancer chemotherapeutic agents. Expert Opin. Emerg. Drugs. 7: 277-288. https://doi.org/10.1517/14728214.7.2.277
  22. Nimmanapalli, R., O'Bryan, E. and Bhalla, K. (2001) Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl-positive human leukemic blasts. Cancer Res. 61: 1799-1804.
  23. Xu, W. and Neckers, L. (2007) Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin. Cancer Res. 13: 1625-1629. https://doi.org/10.1158/1078-0432.CCR-06-2966
  24. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer review. Cell 100: 57-70. https://doi.org/10.1016/S0092-8674(00)81683-9
  25. Workman, P., Burrows, F., Neckers, L. and Rosen, N. (2007) Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann. N. Y. Acad. Sci. 1113: 202-216. https://doi.org/10.1196/annals.1391.012
  26. Sreedhar, A. S., Kalmar, E., and Csermely, P. (2004) Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett. 562: 11-15. https://doi.org/10.1016/S0014-5793(04)00229-7
  27. Becker, B. (2004) Induction of Hsp90 protein expression in malignant melanomas and melanoma metastases. Exp. Dermatol. 13: 27-32.
  28. Chiosis, G., Huezo, H., Rosen, N., Mimnaugh, E., Whitesell, L. and Neckers, L. (2003) 17AAG: Low target binding affinity and potent cell activity finding an explanation. Mol. Cancer Ther. 2: 123-129. https://doi.org/10.4161/cbt.2.2.235
  29. Schnur, R. C., Corman, M. L., Gallaschun, R. J., Cooper, B. A., Dee, M. F., Doty, J. L., Muzzi, M. L., DiOrio, C. I., Barbacci, E. G., Miller, P. E., Pollack, V. A., Savage, D. M., Sloan, D. E., Pustilnik, L. R., Moyer, J. D. and Moyer, M. P. (1995) erbB-2 oncogene inhibition by geldanamycin derivatives: Synthesis, mechanism of action, and structure-activity relationships. J. Med. Chem. 38: 3813-3820. https://doi.org/10.1021/jm00019a011
  30. Hossain, C. F., Okuyama, E. and Yamazaki, M. (1996) A new series of coumarin derivatives having monoamine oxidase inhibitory activity from Monascus anka. Chem. Pharm. Bull. 44: 1535-1539. https://doi.org/10.1248/cpb.44.1535
  31. Yasukawa, K., Takahashi, M., Natori, S., Kawai, K., Yamazaki, M., Takeuchi, M. and Takido, M. (1994) Azaphilones inhibit tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mice. Oncology 51: 108-112. https://doi.org/10.1159/000227320
  32. Akihisa, T., Tokuda, H., Ukiwa, M., Kivota, A., Yasukawa, K., Sakamoto, N., Kimura, Y., Suzuki, T., Takayasu, J. and Nishino, H. (2005) Anti-tumor-initiating effects of monascin, an azaphilonoid pigment from the extract of Monascus pilosus fermented rice (red-mold rice). J. Chem. Biodivers. 2: 1305-1309. https://doi.org/10.1002/cbdv.200590101
  33. Akihisa, T., Tokuda, H., Yasukawa, K., Ukiwa, M., Kivota, A., Sakamoto, N., Suzuki, T., Tanabe, N., Nishino, H. and Kavasu, J. (2005) Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (red-mold rice) and their chemopreventive effects. J. Agric. Food Chem. 53: 562-565. https://doi.org/10.1021/jf040199p
  34. Su, N. W., Lin, Y. L., Lee, M. H. and Ho, C. H. (2005) Ankaflavin from Monascus-fermented red rice exhibits selective cytotoxic effect and induces cell death on Hep G2 cells. J. Agric. Food Chem. 53: 1949-1954. https://doi.org/10.1021/jf048310e
  35. Knecht, A. and Humpf, H. U. (2006) Cytotoxic and antimitotic effects of N-containing Monascus metabolites studied using immortalized human kidney epithelial cells. Mol. Nutr. Food Res. 50: 406-412. https://doi.org/10.1002/mnfr.200500238
  36. Omura, S., Tanaka, H., Ikead, H. and Masuma, R. (1993) Isochromophilones I and II, novel inhibitors against gp120-CD4 binding from Penicillium sp. J. Antibiot. 46: 1908-1911. https://doi.org/10.7164/antibiotics.46.1908
  37. Kono, K., Tanaka, M., Ono, Y., Hosoya, T., Ogita, T. and Kohama, T. (2001) S-15183a and b, new sphingosine kinase inhibitors, produced by a fungus. J. Antibiot. 54: 415-420. https://doi.org/10.7164/antibiotics.54.415
  38. Musso, L., Dallavalle, S. and Merlini, L. (2010) Natural and semisynthetic azaphilones as a new scaffold for Hsp90 inhibitors. Bioorg. Med. Chem. 18: 6031-6043. https://doi.org/10.1016/j.bmc.2010.06.068
  39. Patel, H. J., Modi, S., Chiosis, G. and Taldone, T. (2011) Advances in the discovery and development of heat-shock protein 90 inhibitors for cancer treatment. Expert Opin. Drug Discov. 6: 559-587. https://doi.org/10.1517/17460441.2011.563296
  40. Ammon, H. P. and Wahl, M. A. (1991) Pharmacology of Curcuma longa. Planta Med. 57: 1-7. https://doi.org/10.1055/s-2006-960004
  41. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L. C., Coviello, G. M., Wright, W. E., Weinrich, S. L. and Shay, J. W. (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015. https://doi.org/10.1126/science.7605428
  42. Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner S. and Wright, W. E. (1998) Extension of lifespan by introduction of telomerase into normal human cells. Science 279: 349-352. https://doi.org/10.1126/science.279.5349.349
  43. Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W. and Weinberg, R. A. (1999) Creation of human tumour cells with defined genetic elements. Nature 400: 464-468. https://doi.org/10.1038/22780
  44. Seimiya, H., Sawada, H., Muramatsu, Y., Shimizu, M., Ohko, K., Yamane, K. and Tsuruo, T. (2000) Involvement of 14-3- 3 proteins in nuclear localization of telomerase. EMBO J. 19: 2652-2661. https://doi.org/10.1093/emboj/19.11.2652
  45. Keppler, B. R., Grady, A. T. and Jarstfer. M. B. (2006) The biochemical role of the heat shock protein 90 chaperone complex in establishing human telomerase activity. J. Biol. Chem. 281: 19840-19848. https://doi.org/10.1074/jbc.M511067200
  46. Holt, S. E., Aisner, D. L., Baur, J., Tesmer, V. M., Dy, M., Ouellette, M., Trager, J. B., Morin, G. B. Toft, D. O., Shay, J. W., Wright, W. E. and White, M. A. (1999) Functional requirement of p23 and Hsp90 in telomerase complexes. Genes Dev. 13: 817-826. https://doi.org/10.1101/gad.13.7.817
  47. Forsythe, H. L., Jarvis, J. L., Turner, J. W., Elmore, L. W. and Holt, S. E. (2001) Stable association of hsp90 and p23, but not hsp70, with active human telomerase. J. Biol. Chem. 276: 15571-15574. https://doi.org/10.1074/jbc.C100055200
  48. Lee, J. H. and Chung, I. K. (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett. 290: 76-86. https://doi.org/10.1016/j.canlet.2009.08.026
  49. Teiten, M. H., Reuter, S., Schmucker, S., Dicato, M. and Diederich, M. (2009) Induction of heat shock response by curcumin in human leukemia cells. Cancer Lett. 279: 145-154. https://doi.org/10.1016/j.canlet.2009.01.031
  50. Davenport, J., Manjarrez, J. R., Peterson, L., Krumm, B., Blagg, B. S. and Matts, R. L. (2011) Gambogic acid, a natural product inhibitor of Hsp90. J. Nat. Prod. 74: 1085-1092. https://doi.org/10.1021/np200029q
  51. Yang, Y., Yang, L., You, Q. D., Nie, F. F., Gu, H. Y., Zhao, L., Wang, X. T. and Guo, Q. L. (2007) Differential apoptotic induction of gambogic acid, a novel anticancer natural product, on hepatoma cells and normal hepatocytes. Cancer Lett. 256: 259-266. https://doi.org/10.1016/j.canlet.2007.06.014
  52. Zhao, L., Guo, Q. L., You, Q. D., Wu, Z. Q. and Gu, H. Y. (2004) Gambogic acid induces apoptosis and regulates expressions of Bax and Bcl-2 protein in human gastric carcinoma MGC-803 cells. Biol. Pharm. Bull. 27: 998-1003. https://doi.org/10.1248/bpb.27.998
  53. Pandey, M. K., Sung, B., Ahn, K. S., Kunnumakkara, A. B., Chaturvedi, M. M. and Aggarwal, B. B. (2007) Gambogic acid, a novel ligand for transferrin receptor, potentiates TNFinduced apoptosis through modulation of the nuclear factorkappaB signaling pathway. Blood 110: 3517-3525. https://doi.org/10.1182/blood-2007-03-079616
  54. Ortiz-Sanchez, E., Daniels, T. R., Helguera, G., Martinez- Maza, O., Bonavida, B. and Penichet, M. L. (2009) Enhanced cytotoxicity of an anti-transferrin receptor IgG3-avidin fusion protein in combination with gambogic acid against human malignant hematopoietic cells: Functional relevance of iron, the receptor, and reactive oxygen species. Leukemia 23: 59-70. https://doi.org/10.1038/leu.2008.270
  55. Galam, L., Hadden, M. K., Ma, Z., Ye, Q. Z., Yun, B. G., Blagg, B. S. and Matts, R. L. (2007) High-throughput assay for the identification of Hsp90 inhibitors based on Hsp90- dependent refolding of firefly luciferase. Bioorg. Med. Chem. 15: 1939-1946. https://doi.org/10.1016/j.bmc.2007.01.004
  56. Ren, Y., Yuan, C., Chai, H. B., Ding, Y., Li, X. C., Ferreira, D. and Kinghorn, A. D. (2011) Absolute configuration of (-)- gambogic acid, an antitumor agent. J. Nat. Prod. 74: 460-463. https://doi.org/10.1021/np100422z
  57. Kim, J. E., Kim, A. R., Kim, M. J. and Park, S. N. (2011) Antibacterial, antioxidative and antiaging effects of Allium cepa peel extracts. Appl. Chem. Eng. 22: 178-184.
  58. Powers, M. V. and Workman, P. (2007) Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett. 581: 3758-3769. https://doi.org/10.1016/j.febslet.2007.05.040
  59. Nagai, N., Nakai, A. and Nagata, K. (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem. Biophys. Res. Commun. 208: 1099-1105. https://doi.org/10.1006/bbrc.1995.1447
  60. Aalinkeel, R., Bindukumar, B., Reynolds, J. L., Sykes, D. E., Mahajan, S. D., Chadha, K. C. and Schwartz, S. A. (2008) The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. The Prostate 68: 1773-1789. https://doi.org/10.1002/pros.20845
  61. Matter, W. F., Brown, R. F. and Vlahos, C. J. (1992) The inhibition of phosphatidylinositol 3-kinase by quercetin and analogs. Biochem. Biophys. Res. Commun. 186: 624-631. https://doi.org/10.1016/0006-291X(92)90792-J
  62. Levy, J., Teuerstein, I., Marbach, M., Radian, S. and Sharoni, Y. (1984) Tyrosine protein kinase activity in the DMBAinduced rat mammary tumor: Inhibition by quercetin. Biochem. Biophys. Res. Chem. 123: 1227-1233. https://doi.org/10.1016/S0006-291X(84)80264-8
  63. Cueto, M., Jensen, P. R. and Fenical, W. (2000) N-Meth ylsansalvamide, a cytotoxic cyclic depsipeptide from a marine fungus of the genus fusarium. Phytochem. 55: 223-226. https://doi.org/10.1016/S0031-9422(00)00280-6
  64. Hwang, Y., Rowley, D., Rhodes, D., Gertsch, J., Fenical, W. and Bushman, F. (1999) Mechanism of inhibition of a poxvirus topoisomerase by the marine natural product sansalvamide A. Mol. Pharmacol. 55: 1049-1053.
  65. Belofsky, G. N., Jensen, P. R. and Fenical, W. (1999) Sansalvamide: A new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus fusarium. Tetrahedron Lett. 40: 2913-2916. https://doi.org/10.1016/S0040-4039(99)00393-7
  66. Styers, T. J., Kekec, A., Rodriguez, R. A., Brown, J. D., Cajica, J., Pan, P. S., Parry, E., Carroll, C. L., Medina, I., Corral, R., Lapera, S., Otrubova, K., Pan, C. M., Mcguire, K. L. and Mcalpine, S. R. (2006) Synthesis of sansalvamide A derivatives and their cytotoxicity in the MSS colon cancer cell line HT-29. Bioorg. Med. Chem. 14: 5625-5631. https://doi.org/10.1016/j.bmc.2006.04.031
  67. Rodriguez, R. A., Pan, P. S., Pan, C. M., Ravula, S., Lapera, S. A., Singh, E. K., Styers, T. J., Brown, J. D., Cajica, J., Parry, E., Otrubova, K. and Mcalpine, S. R. (2007) Synthesis of second-generation sansalvamide A derivatives: Novel templates as potential antitumor agents. J. Org. Chem. 72: 1980- 2002. https://doi.org/10.1021/jo061830j
  68. Pan, P. S., Vasko, R. C., Lapera, S. A., Johnson, V. A., Sellers, R. P., Lin, C. C., Pan, C. M., Davis, M. R., Ardi, V. C. and Mcalpine, S. R. (2009) A comprehensive study of sansalvamide A derivatives: The structure-activity relationships of 78 derivatives in two pancreatic cancer cell lines. Bioorg. Med. Chem. 17: 5806-5825. https://doi.org/10.1016/j.bmc.2009.07.017
  69. Vasko, R. C., Rodriguez, R. A., Cunningham, C. N., Ardi, V. C., Agard, D. A. and Mcalpine, S. R. (2010) Mechanistic studies of sansalvamide A-amide: An allosteric modulator of Hsp90. ACS Med. Chem. Lett. 1: 4-8. https://doi.org/10.1021/ml900003t
  70. Sellers, R. P., Alexander, L. D. and Johnson, V. A. (2010) Design and synthesis of Hsp90 inhibitors: exploring the SAR of sansalvamide A derivatives. Bioorg. Med. Chem. 18: 6822-6856. https://doi.org/10.1016/j.bmc.2010.07.042
  71. Hannay, J. A. and Yu, D. (2003) Silibinin: a thorny therapeutic for EGF-R expressing tumors? Cancer. Biol. Ther. 2: 532-533.
  72. Gazak, R., Walterova, D. and Kren, V. (2007) Silybin and silymarin-new and emerging applications in medicine. Curr. Med. Chem. 14: 315-338. https://doi.org/10.2174/092986707779941159
  73. Lu, P., Mamiya, T., Lu, L. L., Mouri, A., Niwa, M., Hiramatsu, M., Zou, L. B., Nagai, T., Ikejima, T. and Nabeshima, T. (2009) Silibinin attenuates amyloid beta(25-35) peptideinduced memory impairments: implication of inducible nitric-oxide synthase and tumor necrosis factor-alpha in mice. J. Pharmacol. Exp. Ther. 331: 319-326. https://doi.org/10.1124/jpet.109.155069
  74. Zhao, H., Brandt, G. E., Galam, L., Matts, R. L. and Blagg, B. S. (2011) Identification and initial SAR of silybin: An Hsp90 inhibitor. Bioorg. Med. Chem. Lett. 21: 2659-2664. https://doi.org/10.1016/j.bmcl.2010.12.088
  75. Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432: 316-323. https://doi.org/10.1038/nature03097
  76. Winters, M. (2006) Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern. Med. Rev. 11: 269-277.
  77. Matsuda, H., Murakami, T., Kishi, A. and Yoshikawa, M. (2001) Structures of withanosides I, II, III, IV, V, VI, and VII, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal. and inhibitory activity for tachyphylaxis to clonidine in isolated guinea-pig ileum. Bioorg. Med. Chem. 9: 1499-1507. https://doi.org/10.1016/S0968-0896(01)00024-4
  78. Ray, A. and Gupta, M. (1994) Withasteroids, a growing group of naturally occurring steroidal lactones. Fortschr. Chem. Org. Naturst. 63: 1-106.
  79. Alhindawi, M. K., Alkhafaji, S. H. and Abdulnabi, M. H. (1992) Anti-granuloma activity of Iraqi Withania-somnifera. J. Ethnopharmacol. 37: 113-116. https://doi.org/10.1016/0378-8741(92)90069-4
  80. Mishra, L., Singh, B. and Dagenias, S. (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern. Med. Rev. 5: 334-336.
  81. Owais, M., Sharad, K. S., Shehbaz, A. and Saleemuddin, M. (2005) Antibacterial efficacy of Withania somnifera (ashwagandha) an indigenous medicinal plant against experimental murine salmonellosis. Phytomedicine 12: 229-235. https://doi.org/10.1016/j.phymed.2003.07.012
  82. Bhattacharya, A., Ghosal, S. and Bhattacharya, S. K. (2001) Anti-oxidant effect of Withania somnifera glycowithanolides in chronic footshock stress-induced perturbations of oxidative free radical scavenging enzymes and lipid peroxidation in rat frontal cortex and striatum. J. Ethnopharmacol. 74: 1-6. https://doi.org/10.1016/S0378-8741(00)00309-3
  83. Yu, Y. K., Hamza, A., Zhang, T., Gu, M. C., Zou, P., Newman, B., Li, Y. Y., Gunatilaka, A. A. L., Zhan, C. G. and Sun, D. X. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 79: 542-551. https://doi.org/10.1016/j.bcp.2009.09.017
  84. Chiosis, G. (2006) Targeting chaperones in transformed systems - a focus on Hsp90 and cancer. Expert Opin. Ther. Targets 10: 37-50. https://doi.org/10.1517/14728222.10.1.37
  85. Neckers, L. (2003) Development of small molecule Hsp90 inhibitors: utilizing both forward and reverse chemical genomics for drug identification. Curr. Med. Chem. 10: 733-739. https://doi.org/10.2174/0929867033457818
  86. Grover, A., Shandilya, A., Agrawal, V., Pratik, P., Bhasme, D., Bisaria, V. S. and Sundar, D. (2011) Hsp90/Cdc37 Chaperone/ co-chaperone complex, a novel junction anticancer target elucidated by the mode of action of herbal drug withaferin A. BMC Bioinformatics 12: Suppl 1:S30. https://doi.org/10.1186/1471-2105-12-S1-S30
  87. Yu, Y., Hamza, A., Zhang, T., Gu, M., Zou, P., Newman, B., Li, Y., Gunatilaka, A. A., Zhan, C. G. and Sun, D. (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem. Pharmacol. 79: 542-551. https://doi.org/10.1016/j.bcp.2009.09.017