References
- Chattopadhyay, A., Gupta, S., Abhishek, Singh, K. and Sanjeev, A. (2011), "Effect of point source, self-reinforcement and heterogeneity on the propagation of magnetoelastic shear wave", Appl. Math., 2(3), 271-282. https://doi.org/10.4236/am.2011.23032
- Chattopadhyay, A., Gupta, S., Sharma, V.K. and Kumari, P. (2010), "Effect of point source and heterogeneity on the propagation of SH-waves", Int. J. Appl. Math. Mech., 6(9), 76-89.
- Daros, C.H. (2013), "Green‟s function for SH-waves in inhomogeneous anisotropic elastic solid with power-function velocity variation", Wave Motion, 50, 101-110. https://doi.org/10.1016/j.wavemoti.2012.07.004
- Ewing, W.M., Jardetzky, W.S. and Press, F. (1957), Elastic Waves in Layered Media, McGraw-Hill, New York.
- Fedorov, F.I. (1968), Theory of Elastic Waves in Crystals, Plenum Press, NewYork.
- George, D., Manolis, Christos, Z. and Karakostas (2003), "Engineering analysis with boundary Elements", Eng. Anal. Bound. Elem, 27(2), 93-100. https://doi.org/10.1016/S0955-7997(02)00086-3
- Gubbins, D. (1990), Seismology and Plate Tectonics, Cambridge University Press, Cambridge.
- Jing, G.U.O., Hui, Q.I., Qingzhan, X.U. and Kirpichnikova, N.Y. (2008), "Scattering of SH-wave by interface cylindrical elastic inclusion with diametrical cracks", Proceeding of the14th World Conference on Earthquake Engineering, Beijing, China.
- Kakar, R. and Kakar, S. (2012), "Propagation of Love waves in a non-homogeneous elastic media", J. Acad. Indus. Res., 1(6), 323-328. 299
- Kakar, R. and Gupta, K.C. (2012), "Propagation of Love waves in a non-homogeneous orthotropic layer under „P‟ overlying semi-infinite non-homogeneous medium", Global J. Pure Appl. Math., 8(4), 483-494.
- Kakar, R. and Gupta, K.C. (2013), "Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space", Interact. Multiscale Mech., 6(1), 1-14. https://doi.org/10.12989/imm.2013.6.1.001
- Kazumi, W. and Robert, G. (2002), "Green's function for SH-waves in a cylindrically monoclinic material", Payton J. Mech. Phys. Solids, 50(11), 2425-2439. https://doi.org/10.1016/S0022-5096(02)00026-1
- Kazumi, W. and Robert, G. (2002), "Payton Green‟s function for torsional waves in a cylindrically monoclinic material", Int. J. Eng. Sci., 43, 1283-1291.
- Kirpichnikova, N.Y. (2012), "The green‟s function of SH-polarized surface waves", J. Math. Sci., 185(4), 591-595. https://doi.org/10.1007/s10958-012-0942-9
- Kumar, R. and Gupta, R.R. (2010), "Analysis of wave motion in micropolar transversely isotropic thermoelastic half space without energy dissipation", Interact. Multiscale Mech., 3(2), 145-156. https://doi.org/10.12989/imm.2010.3.2.145
- Li, Y.L. (1994), "Exact analytic expressions of Green‟s functions for wave propagation in certain types of range-dependent inhomogeneous media", J. Acoust. Soc. Am., 96, 484-490. https://doi.org/10.1121/1.410433
- Li, W., Liu, S.B. and Yang, W. (2010), "A new approach of solving Green‟s function for wave propagation in an inhomogeneous absorbing medium", Chin. Phys. B, 19, 1-3.
- Matsuda, O. and Glorieux, C. (2007), "A Green‟s function method for surface acoustic waves in functionally graded materials", J. Acoust. Soc. Am., 121(6), 3437-45. https://doi.org/10.1121/1.2722049
- Ponnusamy, P. and Selvamani, R. (2012), "Wave propagation in a generalized thermo elastic plate embedded in elastic medium", Interact. Multiscale Mech., 5(1), 13-26. https://doi.org/10.12989/imm.2012.5.1.013
- Popov, M.M. (2002), "SH waves in a homogeneous transversely isotropic medium generated by a concentrated force", J. Math. Sci., 111(5), 3791-3798. https://doi.org/10.1023/A:1016306614280
- Rommel, B.E. (1990), Extension of the Weyl Integral for Anisotropic Medium, Fourth International Workshop on Seismic Anisotropy, Edinburgh.
- Shaw, R.P. and Manolis, G. (1997), "Conformal mapping solutions for the 2D heterogeneous Helmholtz equation", Comput. Mech., 18, 411-418.
- Stakgold, I. (1979), Green's Functions and Boundary Value Problems, John Wiley and Sons, New York, 51-55.
- Symon, K.R. (1971), Mechanics, Addison Wesley Publishing Company, Reading, Massachusets.
- Uscinski, B.J. (1977), The Elements of Wave Propagation Random Media, McGraw-Hill International Book Company, Great Britain.
- Vaclav, V. and Kiyoshi, Y. (1996), "SH-wave Green tensor for homogeneous transversely isotropic media by higher-order approximations in asymptotic ray theory", Wave Motion, 23, 83-93. https://doi.org/10.1016/0165-2125(95)00041-0
Cited by
- Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space vol.7, pp.1, 2014, https://doi.org/10.12989/gae.2014.7.1.001