DOI QR코드

DOI QR Code

A coupled finite element/meshfreemoving boundary method for self-piercing riveting simulation

  • Cai, Wayne (Research and Development Center, General Motors R&D Center) ;
  • Wang, Hui-Ping (Research and Development Center, General Motors R&D Center) ;
  • Wu, C.T. (Livermore Software Technology Corporation)
  • Received : 2013.03.01
  • Accepted : 2013.05.06
  • Published : 2013.09.01

Abstract

The use of lightweight materials has been steadily increasing in the automotive industry, and presents new challenges to material joining. Among many joining processes, self-piercing riveting (SPR) is particularly promising for joining lightweight materials (such as aluminum alloys) and dissimilar materials (such as steel to Al, and metal to polymer). However, to establish a process window for optimal joint performance, it often requires a long trial-and-error testing of the SPR process. This is because current state of the art in numerical analysis still cannot effectively resolve the problems of severe material distortion and separation in the SPR simulation. This paper presents a coupled meshfree/finite element with a moving boundary algorithm to overcome these numerical difficulties. The simulation results are compared with physical measurements to demonstrate the effectiveness of the present method.

Keywords

References

  1. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  2. Bouchard, P.O., Laurent, T. and Tollier, L. (2008), "Numerical modeling of self-pierce riveting-From riveting process modeling down to structure analysis", J. Mater. Pr. Tech., 202, 290-300. https://doi.org/10.1016/j.jmatprotec.2007.08.077
  3. Cai, W., Wang, P.C. and Yang, W. (2005), "Assembly dimensional prediction for self-piercing riveted aluminum panels", Int. J. Mach. Tool. Manufact., 45(6), 695-704. https://doi.org/10.1016/j.ijmachtools.2004.09.023
  4. Cai, W., Wang, H.P., Wang, P.C. and Botkin, M.E. (2008), "Simulations of automotive manufacturing processes using a coupled meshfree/finite element method", Proceedings of The 6th International Conference of Frontiers of Design and Manufacturing, Xi'an, China.
  5. Casalino, G., Rotondo, A. and Ludovico, A. (2008), "On the numerical modeling of the multiphysics self piercing riveting process based on the finite element technique", Adv. Eng. Softw., 39, 787-795. https://doi.org/10.1016/j.advengsoft.2007.12.002
  6. Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comp. Meth. Appl. Mech. Eng., 139, 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
  7. Duarte, C.A. M. and Oden, J.T. (1996), "A H-P adaptive method using clouds", Comp. Meth. Appl. Mech. Eng., 139, 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  8. He, X., Gu, F. and Ball, A. (2012), "Recent development in finite element analysis of self-piercing riveted joints", Int. J. Adv. Manufact. Tech., 58, 643-649. https://doi.org/10.1007/s00170-011-3414-3
  9. Fleming, M., Chu. Y. A., Moran. B., Belytschko, T. (1997), "Enriched element-free galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40(8), 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  10. Hill, H. (1994), "Introduction to the self-pierce riveting process and equipment", International Body Engineering Conference.
  11. King, P.R. (1997), "Analysis and quality monitoring self-pierce riveting process", Ph.D. Dissertation, University of Hertfordshire.
  12. Krongauz, Y. and Belytschko, T. (1998), "EFG approximation with discontinuous derivatives", Int. J. Numer. Meth. Eng., 41(7), 1215-1233. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7<1215::AID-NME330>3.0.CO;2-#
  13. Litherland, H. (1998), "Self-piercing riveting for aluminum applications", INALCO'98 Proceedings, 7th International Conference, Cambridge, April.
  14. Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fluid., 20, 1081-1106. https://doi.org/10.1002/fld.1650200824
  15. LS-DYNA Keyword User's Manual (2012), Version 971.
  16. Masters, I., Fan, X., Roy, R. and Williams, D. (2012), "Modeling distortion induced in an assembly by the self- piercing rivet process", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 226(2), 300-312. https://doi.org/10.1177/0954405411414105
  17. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comp. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  18. Porcaro, R., Hanssen, A.G., Aalberg, A. and Langseth, M. (2004), "Joining of aluminum using self-piercing riveting: testing, modeling and analysis", Inter. J. Crashworth., 9(2), 141-154. https://doi.org/10.1533/ijcr.2004.0279
  19. Porcaro, R., Hanssen, A.G., Langseth, M. and Aalberg, A. (2006), "Self-piercing riveting process: An experimental and numerical investigation", J. Mater. Pr. Tech., 171, 10-20. https://doi.org/10.1016/j.jmatprotec.2005.05.048
  20. Sun, X. and Khaleel, M.A. (2005), "Performance optimization of self-piercing rivets through analytical rivet strength estimation", J. Manufact. Pr., 7(1), 83-93. https://doi.org/10.1016/S1526-6125(05)70085-2
  21. Sunday, S.P. (1983), "Self-piercing rivets for aluminum components", SAE paper, #830526.
  22. Jaguar,_X.J. (2013), http://en.wikipedia.org/wiki/Jaguar_XJ_(X350).
  23. TWI (2000), "Self-piercing riveting (knowledge summary)", TWI World Centre for Materials Joining Technology, Available at: http://www.twi.co.uk.
  24. Wang, H.P., Wu. C.T., Guo, Y. and Botkin, M.E. (2009), "A coupled meshfree/finite element method for automotive crashworthiness simulations", Int. J. Impact Eng., 36(10), 1210-1222. https://doi.org/10.1016/j.ijimpeng.2009.03.004
  25. Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized meshfree approximation for the meshfree analysis of solids", Int. J. Numer. Meth. Eng., 85, 693-722. https://doi.org/10.1002/nme.2991
  26. Wu, C.T., Hu, W. and Chen, J.S. (2012), "A meshfree-enriched finite element method for compressible and near-incompressible elasticity", Int. J. Numer. Meth. Eng., 90, 882-914. https://doi.org/10.1002/nme.3349
  27. Wu, C.T., Guo, Y. and Askari, E. (2013), "Numerical modeling of composite solids using an immersed meshfree Galerkin method", Compos. Part B: Eng., 45(1), 1397-1413. https://doi.org/10.1016/j.compositesb.2012.09.061