References
- Andrade Pires, F.M., de Souza Neto, E.A. and de la Cuesta Padilla, J.L. (2004), "An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains", Int. J. Numer. Meth. Eng., 20, 569-583.
- Arnold, D.N., Brezzi, F. and Franca, L.P. (1984), "A stable finite element for the Stokes equations", Calcolo, 21, 337-344. https://doi.org/10.1007/BF02576171
- Auricchio, F., Beirao de Veiga, L., Buffam, C., Lovadina, A., Reali, A. and Sangalli, G. (2007), "A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation", Comput. Meth. Appl. Mech. Eng., 197, 160-172. https://doi.org/10.1016/j.cma.2007.07.005
- Bathe, K.J. (1996), Finite element procedures, Prentice-Hall, New Jersey.
- Babuska, I. (1973), "The finite element method with Lagrangian multipliers", Numer. Math., 20, 179-192. https://doi.org/10.1007/BF01436561
- Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
- Belytschko, T., Liu, W.K. and Moran, B. (2001), Nonlinear finite elements for continua and structures, (Third Ed.), John Wiley & Sons, New York.
- Bonet, J. and Burton, A.J. (1998), "A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications", Commun. Numer. Meth. Eng., 14, 437-449. https://doi.org/10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.0.CO;2-W
- Chen, L., Liu, G.R., Nourbakhsh-Nia, N. and Zeng, K. (2010), "A singular edge-based smoothed finite element method (ES-FEM) for biomaterial interface cracks", Comput. Mech., 45, 109-125. https://doi.org/10.1007/s00466-009-0422-3
- Chen, J.S., Pan, C. and Wu, C.T. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory", J. Appl. Mech., 63, 862-868. https://doi.org/10.1115/1.2787240
- Chen, J.S., Wu, C.T. and Pan, C. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications", J. Appl. Mech., 63, 869-876. https://doi.org/10.1115/1.2787241
- Chen, J.S., Han, W., Wu, C.T. and Duan, W. (1997), "On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity", Comput. Meth. Appl. Mech. Eng., 142, 335-351. https://doi.org/10.1016/S0045-7825(96)01139-5
- Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), "An improved reproducing kernel particle method for nearly incompressible finite elasticity", Comput. Meth. Appl. Mech. Eng., 181, 117-145. https://doi.org/10.1016/S0045-7825(99)00067-5
- Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
- De, S. and Bathe, K.J. (2001), "Displacement/pressure mixed interpolation in the method of finite spheres", Int. J. Numer. Meth. Eng., 51, 275-292. https://doi.org/10.1002/nme.168
- Dolbow, J. and Belytschko, T. (1999), "Volumetric locking in the element free Galerkin method", Int. J. Numer. Meth. Eng., 46, 925-942. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
- Dolbow, J. and Devan, A. (2004), "Enrichment of enhanced assumed strain approximations for representing strong discontinuities patch test", Int. J. Numer. Meth. Eng., 59, 47-67. https://doi.org/10.1002/nme.862
- Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 39, 237-262.
- Elguedj, T., Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), " B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements", Comput. Meth. Appl. Mech. Eng., 197, 2732-2762. https://doi.org/10.1016/j.cma.2008.01.012
- Guo, Y., Ortiz, M., Belytschko, T. and Repetto, E.A. (2000), "Triangular composite finite elements", Comput. Meth. Appl. Mech. Eng., 47, 287-316.
- Hauret, P., Kuhl, E. and Ortiz, M. (2007), "Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 72, 253-294.
- He, Z.C., Liu, G.R., Zhong, Z.H., Wu, S.C., Zhang, G.Y. and Cheng, A.G. (2009), "An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems", Comput. Meth. Appl. Mech. Eng., 199, 20-33. https://doi.org/10.1016/j.cma.2009.09.014
- Hu, W., Wu, C.T. and Koishi, M. (2012), "A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers", Finite Elem. Anal. Des., 50, 161-172. https://doi.org/10.1016/j.finel.2011.09.007
- Hughes, T.J.R. (2000), The finite element method, Prentice-Hall: Englewood Cliffs, NJ.
- Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
- Kikuchi, N. and Oden, J.T. (1988), Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.
- Krysl, P. and Zhu, B. (2008), "Locking-free continuum displacement finite elements with nodal integration", Comput. Meth. Appl. Mech. Eng., 76, 1020-1043.
- Lamichhane, B.P. (2009), "Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity", IMA J. Numer. Anal., 29, 404-420.
- Liu, G.R. and Nguyen-Thoi, T. (2010), Smoothed finite element method, CRC Press, Boca Raton.
- Liu, W.K., Ong, J.S.J. and Uras, R.A. (1986), "Finite element stabilization matrices-a unification approach", Comput. Meth. Appl. Mech. Eng., 53, 13-46.
- Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Comput. Meth. Appl. Mech. Eng., 38, 1655-1679.
- Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
- Ortiz, A., Puso, M.A. and Sukumar, N. (2010), "Maximum-Entropy meshfree method for compressible and near-incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 199, 1859-1871. https://doi.org/10.1016/j.cma.2010.02.013
- Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation", Finite Elem. Anal. Des., 47, 683-697. https://doi.org/10.1016/j.finel.2011.02.001
- Peen, R.W. (1970), "Volume changes accompanying the extension of rubber", Trans. Soc. Rheol., 14, 509-517. https://doi.org/10.1122/1.549176
- Puso, M.A. and Laursen, T.A. (2004), "A mortar segment-to-segment contact method for large deformation solid mechanics", Comput. Meth. Appl. Mech. Eng., 193, 601-629. https://doi.org/10.1016/j.cma.2003.10.010
- Puso, M.A. and Solberg, J. (2006), "A stabilized nodally integrated tetrahedral", Comput. Meth. Appl. Mech. Eng., 67, 841-867.
- Rivlin, R.S. (1949), "Large elastic deformation of isotropic materials, Part VI, further results in the theory of torsion, shear and flexure", Philos. Trans. R. Soc. of London, A242, 173-195.
- Simo, J.C. and Hughes, T. (1986), "On the variational foundation of assumed strain methods", ASME J. Appl. Mech., 53, 51-54. https://doi.org/10.1115/1.3171737
- Srinivasan, K.R., Matous, K. and Geubelle, P.H. (2008), "Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids", Comput. Meth. Appl. Mech. Eng., 197, 4882-4893. https://doi.org/10.1016/j.cma.2008.07.014
- Stenberg, R. (1990), "Error analysis of some finite element methods for the Stokes problem", Math. Comput., 54, 495-508. https://doi.org/10.1090/S0025-5718-1990-1010601-X
- Stevenson, A.C. (1943), "Some boundary problems of two-dimensional elasticity", Philos. Mag., 34, 766-793. https://doi.org/10.1080/14786444308521444
- Vidal, Y., Villon, P. and Huerta, A. (2003), "Locking in the incompressible limit: pseudo-divergence-free element free Galerkin", Commun. Numer. Meth. Eng., 19, 725-735. https://doi.org/10.1002/cnm.631
- Washizu, K. (1982), Variational Methods in Elasticity and Plasticity (3rd edn), Pergamon Press, New York.
- Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2, 147-169.
- Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized meshfree approximation for the meshfree analysis of solids", Comput. Meth. Appl. Mech. Eng., 85, 693-722.
- Wu, C.T. and Hu, W. (2011), "Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Meth. Appl. Mech. Eng., 200, 2991-3010. https://doi.org/10.1016/j.cma.2011.06.013
- Wu, C.T. and Hu, W. (2012), "A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses", Comput. Mech., 50, 1-18. https://doi.org/10.1007/s00466-011-0665-7
- Yang, B., Laursen, T.A. and Meng, X. (2005), "Two dimensional mortar contact methods for large deformation frictional sliding", Comput. Meth. Appl. Mech. Eng., 62, 1183-1225.
- Zienkiewicz, O.C. and Taylor, R.L. (1987), The finite element method (third ed.), McGraw-Hill, London.
Cited by
- A Robust Numerical Procedure for the Thermomechanical Flow Simulation of Friction Stir Welding Process Using an Adaptive Element-Free Galerkin Method vol.2015, 2015, https://doi.org/10.1155/2015/486346