DOI QR코드

DOI QR Code

Metal forming analysis using meshfree-enriched finite element method and mortar contact algorithm

  • Hu, Wei (Livermore Software Technology Corporation) ;
  • Wu, C.T. (Livermore Software Technology Corporation)
  • Received : 2013.03.02
  • Accepted : 2013.05.06
  • Published : 2013.09.01

Abstract

In this paper, a meshfree-enriched finite element method (ME-FEM) is introduced for the large deformation analysis of nonlinear path-dependent problems involving contact. In linear ME-FEM, the element formulation is established by introducing a meshfree convex approximation into the linear triangular element in 2D and linear tetrahedron element in 3D along with an enriched meshfree node. In nonlinear formulation, the area-weighted smoothing scheme for deformation gradient is then developed in conjunction with the meshfree-enriched element interpolation functions to yield a discrete divergence-free property at the integration points, which is essential to enhance the stress calculation in the stage of plastic deformation. A modified variational formulation using the smoothed deformation gradient is developed for path-dependent material analysis. In the industrial metal forming problems, the mortar contact algorithm is implemented in the explicit formulation. Since the meshfree-enriched element shape functions are constructed using the meshfree convex approximation, they pose the desired Kronecker-delta property at the element edge thus requires no special treatments in the enforcement of essential boundary condition as well as the contact conditions. As a result, this approach can be easily incorporated into a conventional displacement-based finite element code. Two elasto-plastic problems are studied and the numerical results indicated that ME-FEM is capable of delivering a volumetric locking-free and pressure oscillation-free solutions for the large deformation problems in metal forming analysis.

Keywords

References

  1. Andrade Pires, F.M., de Souza Neto, E.A. and de la Cuesta Padilla, J.L. (2004), "An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains", Int. J. Numer. Meth. Eng., 20, 569-583.
  2. Arnold, D.N., Brezzi, F. and Franca, L.P. (1984), "A stable finite element for the Stokes equations", Calcolo, 21, 337-344. https://doi.org/10.1007/BF02576171
  3. Auricchio, F., Beirao de Veiga, L., Buffam, C., Lovadina, A., Reali, A. and Sangalli, G. (2007), "A fully locking-free isogeometric approach for plane linear elasticity problems: a stream function formulation", Comput. Meth. Appl. Mech. Eng., 197, 160-172. https://doi.org/10.1016/j.cma.2007.07.005
  4. Bathe, K.J. (1996), Finite element procedures, Prentice-Hall, New Jersey.
  5. Babuska, I. (1973), "The finite element method with Lagrangian multipliers", Numer. Math., 20, 179-192. https://doi.org/10.1007/BF01436561
  6. Babuska, I. and Melenk, J.M. (1997), "The partition of unity method", Int. J. Numer. Methods Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  7. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free Galerkin methods", Int. J. Numer. Meth. Eng., 37, 229-256. https://doi.org/10.1002/nme.1620370205
  8. Belytschko, T., Liu, W.K. and Moran, B. (2001), Nonlinear finite elements for continua and structures, (Third Ed.), John Wiley & Sons, New York.
  9. Bonet, J. and Burton, A.J. (1998), "A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications", Commun. Numer. Meth. Eng., 14, 437-449. https://doi.org/10.1002/(SICI)1099-0887(199805)14:5<437::AID-CNM162>3.0.CO;2-W
  10. Chen, L., Liu, G.R., Nourbakhsh-Nia, N. and Zeng, K. (2010), "A singular edge-based smoothed finite element method (ES-FEM) for biomaterial interface cracks", Comput. Mech., 45, 109-125. https://doi.org/10.1007/s00466-009-0422-3
  11. Chen, J.S., Pan, C. and Wu, C.T. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part I: Theory", J. Appl. Mech., 63, 862-868. https://doi.org/10.1115/1.2787240
  12. Chen, J.S., Wu, C.T. and Pan, C. (1996), "A pressure projection method for nearly incompressible rubber hyperelasticity, Part II: Applications", J. Appl. Mech., 63, 869-876. https://doi.org/10.1115/1.2787241
  13. Chen, J.S., Han, W., Wu, C.T. and Duan, W. (1997), "On the perturbed Lagrangian formulation for nearly incompressible and incompressible hyperelasticity", Comput. Meth. Appl. Mech. Eng., 142, 335-351. https://doi.org/10.1016/S0045-7825(96)01139-5
  14. Chen, J.S., Yoon, S., Wang, H.P. and Liu, W.K. (2000), "An improved reproducing kernel particle method for nearly incompressible finite elasticity", Comput. Meth. Appl. Mech. Eng., 181, 117-145. https://doi.org/10.1016/S0045-7825(99)00067-5
  15. Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
  16. De, S. and Bathe, K.J. (2001), "Displacement/pressure mixed interpolation in the method of finite spheres", Int. J. Numer. Meth. Eng., 51, 275-292. https://doi.org/10.1002/nme.168
  17. Dolbow, J. and Belytschko, T. (1999), "Volumetric locking in the element free Galerkin method", Int. J. Numer. Meth. Eng., 46, 925-942. https://doi.org/10.1002/(SICI)1097-0207(19991030)46:6<925::AID-NME729>3.0.CO;2-Y
  18. Dolbow, J. and Devan, A. (2004), "Enrichment of enhanced assumed strain approximations for representing strong discontinuities patch test", Int. J. Numer. Meth. Eng., 59, 47-67. https://doi.org/10.1002/nme.862
  19. Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 39, 237-262.
  20. Elguedj, T., Bazilevs, Y., Calo, V.M. and Hughes, T.J.R. (2008), " B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS elements", Comput. Meth. Appl. Mech. Eng., 197, 2732-2762. https://doi.org/10.1016/j.cma.2008.01.012
  21. Guo, Y., Ortiz, M., Belytschko, T. and Repetto, E.A. (2000), "Triangular composite finite elements", Comput. Meth. Appl. Mech. Eng., 47, 287-316.
  22. Hauret, P., Kuhl, E. and Ortiz, M. (2007), "Diamond elements: a finite element/discrete-mechanics approximation scheme with guaranteed optimal convergence in incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 72, 253-294.
  23. He, Z.C., Liu, G.R., Zhong, Z.H., Wu, S.C., Zhang, G.Y. and Cheng, A.G. (2009), "An edge-based smoothed finite element method (ES-FEM) for analyzing three-dimensional acoustic problems", Comput. Meth. Appl. Mech. Eng., 199, 20-33. https://doi.org/10.1016/j.cma.2009.09.014
  24. Hu, W., Wu, C.T. and Koishi, M. (2012), "A displacement-based nonlinear finite element formulation using meshfree-enriched triangular elements for the two-dimensional large deformation analysis of elastomers", Finite Elem. Anal. Des., 50, 161-172. https://doi.org/10.1016/j.finel.2011.09.007
  25. Hughes, T.J.R. (2000), The finite element method, Prentice-Hall: Englewood Cliffs, NJ.
  26. Hughes, T.J.R., Cottrell, J.A. and Bazilevs, Y. (2005), "Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement", Comput. Meth. Appl. Mech. Eng., 194, 4135-4195. https://doi.org/10.1016/j.cma.2004.10.008
  27. Kikuchi, N. and Oden, J.T. (1988), Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia.
  28. Krysl, P. and Zhu, B. (2008), "Locking-free continuum displacement finite elements with nodal integration", Comput. Meth. Appl. Mech. Eng., 76, 1020-1043.
  29. Lamichhane, B.P. (2009), "Inf-sup stable finite element pairs based on dual meshes and bases for nearly incompressible elasticity", IMA J. Numer. Anal., 29, 404-420.
  30. Liu, G.R. and Nguyen-Thoi, T. (2010), Smoothed finite element method, CRC Press, Boca Raton.
  31. Liu, W.K., Ong, J.S.J. and Uras, R.A. (1986), "Finite element stabilization matrices-a unification approach", Comput. Meth. Appl. Mech. Eng., 53, 13-46.
  32. Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995), "Reproducing kernel particle methods for structural dynamics", Comput. Meth. Appl. Mech. Eng., 38, 1655-1679.
  33. Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comput. Meth. Appl. Mech. Eng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
  34. Ortiz, A., Puso, M.A. and Sukumar, N. (2010), "Maximum-Entropy meshfree method for compressible and near-incompressible elasticity", Comput. Meth. Appl. Mech. Eng., 199, 1859-1871. https://doi.org/10.1016/j.cma.2010.02.013
  35. Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation", Finite Elem. Anal. Des., 47, 683-697. https://doi.org/10.1016/j.finel.2011.02.001
  36. Peen, R.W. (1970), "Volume changes accompanying the extension of rubber", Trans. Soc. Rheol., 14, 509-517. https://doi.org/10.1122/1.549176
  37. Puso, M.A. and Laursen, T.A. (2004), "A mortar segment-to-segment contact method for large deformation solid mechanics", Comput. Meth. Appl. Mech. Eng., 193, 601-629. https://doi.org/10.1016/j.cma.2003.10.010
  38. Puso, M.A. and Solberg, J. (2006), "A stabilized nodally integrated tetrahedral", Comput. Meth. Appl. Mech. Eng., 67, 841-867.
  39. Rivlin, R.S. (1949), "Large elastic deformation of isotropic materials, Part VI, further results in the theory of torsion, shear and flexure", Philos. Trans. R. Soc. of London, A242, 173-195.
  40. Simo, J.C. and Hughes, T. (1986), "On the variational foundation of assumed strain methods", ASME J. Appl. Mech., 53, 51-54. https://doi.org/10.1115/1.3171737
  41. Srinivasan, K.R., Matous, K. and Geubelle, P.H. (2008), "Generalized finite element method for modeling nearly incompressible bimaterial hyperelastic solids", Comput. Meth. Appl. Mech. Eng., 197, 4882-4893. https://doi.org/10.1016/j.cma.2008.07.014
  42. Stenberg, R. (1990), "Error analysis of some finite element methods for the Stokes problem", Math. Comput., 54, 495-508. https://doi.org/10.1090/S0025-5718-1990-1010601-X
  43. Stevenson, A.C. (1943), "Some boundary problems of two-dimensional elasticity", Philos. Mag., 34, 766-793. https://doi.org/10.1080/14786444308521444
  44. Vidal, Y., Villon, P. and Huerta, A. (2003), "Locking in the incompressible limit: pseudo-divergence-free element free Galerkin", Commun. Numer. Meth. Eng., 19, 725-735. https://doi.org/10.1002/cnm.631
  45. Washizu, K. (1982), Variational Methods in Elasticity and Plasticity (3rd edn), Pergamon Press, New York.
  46. Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2, 147-169.
  47. Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized meshfree approximation for the meshfree analysis of solids", Comput. Meth. Appl. Mech. Eng., 85, 693-722.
  48. Wu, C.T. and Hu, W. (2011), "Meshfree enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Meth. Appl. Mech. Eng., 200, 2991-3010. https://doi.org/10.1016/j.cma.2011.06.013
  49. Wu, C.T. and Hu, W. (2012), "A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses", Comput. Mech., 50, 1-18. https://doi.org/10.1007/s00466-011-0665-7
  50. Yang, B., Laursen, T.A. and Meng, X. (2005), "Two dimensional mortar contact methods for large deformation frictional sliding", Comput. Meth. Appl. Mech. Eng., 62, 1183-1225.
  51. Zienkiewicz, O.C. and Taylor, R.L. (1987), The finite element method (third ed.), McGraw-Hill, London.

Cited by

  1. A Robust Numerical Procedure for the Thermomechanical Flow Simulation of Friction Stir Welding Process Using an Adaptive Element-Free Galerkin Method vol.2015, 2015, https://doi.org/10.1155/2015/486346