DOI QR코드

DOI QR Code

Meshfree/GFEM in hardware-efficiency prospective

  • Tian, Rong (Institute of Computing Technology, Chinese Academy of Sciences)
  • 투고 : 2013.03.16
  • 심사 : 2013.05.06
  • 발행 : 2013.09.01

초록

A fundamental trend of processor architecture evolving towards exaflops is fast increasing floating point performance (so-called "free" flops) accompanied by much slowly increasing memory and network bandwidth. In order to fully enjoy the "free" flops, a numerical algorithm of PDEs should request more flops per byte or increase arithmetic intensity. A meshfree/GFEM approximation can be the class of the algorithm. It is shown in a GFEM without extra dof that the kind of approximation takes advantages of the high performance of manycore GPUs by a high accuracy of approximation; the "expensive" method is found to be reversely hardware-efficient on the emerging architecture of manycore.

키워드

참고문헌

  1. Babuska, I. and Melenk, J.M. (1997), "Partition of unity method", Int. J. Numer. Meth. Eng., 40, 727-758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
  2. Babuska, I., Caloz, G. and Osborn, J.E. (1994), "Special finite element methods for a class of second order elliptic problems with rough coefficients", SIAM J Numer. Anal., 31, 945-981. https://doi.org/10.1137/0731051
  3. Cecka, C., Lew, A. and Darve, E. (2011), "Assembly of finite element methods on graphics processors", Int. J. Numer. Meth. Eng., 85(5), 640-669. https://doi.org/10.1002/nme.2989
  4. DOE Exascale Initiative Roadmap (2009), Architecture and Technology Workshop, San Diego, December.
  5. DOE Office of Science Summary report of the Advanced Scientific Computing Advisory Committee (ASCAC) Subcommittee (2010), The opportunities and challenges of exascale computing.
  6. Duarte, C.A. and Oden, J.T. (1996), "An h-p adaptive method using clouds", Comput. Meth. Appl. Mech. Eng., 139(1-4), 237-262. https://doi.org/10.1016/S0045-7825(96)01085-7
  7. Duarte, C.A., Babuska, I. and Oden, J.T. (2000), "Generalized finite element methods for three-dimensional structural mechanics problems", Comput. Struct., 77, 215-232. https://doi.org/10.1016/S0045-7949(99)00211-4
  8. Duarte, C.A., Hamzeh, O.N., Liszka, T.J. and Tworzydlo, W.W. (2001), "A generalized finite elementmethod for the simulation of three-dimensional dynamic crack propagation", Comput. Meth. Appl. Mech. Eng., 190, 2227-2262. https://doi.org/10.1016/S0045-7825(00)00233-4
  9. Duarte, C.A. and Kim, D.J. (2008), "Analysis and applications of a generalized finite element method with global-local enrichment functions", Comput. Meth. Appl. Mech. Eng., 197(6-8), 487-504. https://doi.org/10.1016/j.cma.2007.08.017
  10. Karatarakis, A., Metsis, P. and Papadrakakis, M. (2013), "GPU-Acceleration of stiffness matrix calculation and efficient initialization of EFG meshless methods", Comput. Meth. Appl. Mech. Eng., 258, 63-80. https://doi.org/10.1016/j.cma.2013.02.011
  11. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37, 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  12. Melenk, J.M. and Babuska, I. (1996), "The partition of unity finite element method: basic theory and applications", Comput. Meth. Appl. Mech. Eng., 139, 289-314. https://doi.org/10.1016/S0045-7825(96)01087-0
  13. Oden, J.T., Duarte, C.A. and Zienkiewicz, O.C. (1998), "A new cloud-based hp finite element method", Comput. Meth. Appl.Mech. Eng., 153(1-2), 117-126. https://doi.org/10.1016/S0045-7825(97)00039-X
  14. O'Hara, P., Duarte, C.A. and Eason, T. (2009), "Generalized finite element analysis for three dimensional problems exhibiting sharp thermal gradients", Comput. Meth. Appl. Mech. Eng., 198, 1857-1871. https://doi.org/10.1016/j.cma.2008.12.024
  15. Simone, A., Duarte C.A. and Van der Giessen E. (2006), "A generalized finite element method for polycrystals with discontinuous grain boundaries", Int. J. Numer. Meth. Eng., 67, 1122-1145. https://doi.org/10.1002/nme.1658
  16. Strouboulis, T., Babuska, I. and Copps, K. (2000), "The design and analysis of the generalized finite element method", Comput. Meth. Appl. Mech. Eng., 181(1-3), 43-69. https://doi.org/10.1016/S0045-7825(99)00072-9
  17. Strouboulis, T., Copps, K. and Babuska, I. (2000), "The generalized finite element method: an example of its implementation and illustration of its performance", Int. J. Numer. Meth. Eng., 47, 1401-1417. https://doi.org/10.1002/(SICI)1097-0207(20000320)47:8<1401::AID-NME835>3.0.CO;2-8
  18. Strouboulis, T., Copps, K. and Babuska, I. (2001), "The generalized finite element method", Computer Methods in Applied Mechanics and Engineering, 190(32-33), 4081-4193. https://doi.org/10.1016/S0045-7825(01)00188-8
  19. Strouboulis, T., Zhang, L. and Babuska, I. (2003), "Generalized finite element method using mesh-based handbooks: application to problems in domains with many voids", Comput. Meth. Appl. Mech. Eng., 192, 3109-3161. https://doi.org/10.1016/S0045-7825(03)00347-5
  20. Strouboulis, T., Zhang, L. and Babuska, I. (2004), "p-version of the generalized FEM using mesh-based handbooks with applications to multiscale problems", Int. J. Numer. Meth. Eng., 60, 1639-1672. https://doi.org/10.1002/nme.1017
  21. Strouboulis, T., Zhang, L., Wang, D. and Babuska, I. (2006), "A posteriori error estimation for generalized finite element methods", Comput. Meth. Appl. Mech. Eng., 195, 852-879. https://doi.org/10.1016/j.cma.2005.03.004
  22. Strouboulis, T., Babuska, I. and Hidajat, R. (2006), "The generalized finite element method for Helmholtz equation: theory, computation and open problems", Comput. Meth. Appl. Mech. Eng., 195, 4711-4731. https://doi.org/10.1016/j.cma.2005.09.019
  23. Strouboulis, T., Hidajat, R. and Babuska, I. (2008), "The generalized finite element method for Helmholtz equation, part II: effect of choice of handbook functions, error due to absorbing boundary conditions and its assessment", Comput. Meth. Appl. Mech. Eng., 197, 364-380. https://doi.org/10.1016/j.cma.2007.05.019
  24. Tian, R. (2012), "Co-design thinking towards exascale computing", Inform. Tech. Letter, 10(3), 50-63. (in Chinese)
  25. Tian, R. and Sun, N. (2013), "Some considerations about exascale computing in China", Commun. China Comput. Feder., 9(2), 52-60. (in Chinese)
  26. Tian, R. (2013), "Extra-dof-free and linearly independent enrichments in GFEM", Comput. Meth. Appl. Mech. Eng., to appear.
  27. http://www.top500.org/project/linpack/
  28. http://nvworld.ru/files/articles/calculations-on-gpu-advantages-fermi/fermipeformance.pdf
  29. http://code.google.com/p/cusp-library/

피인용 문헌

  1. Extra-dof-free and linearly independent enrichments in GFEM vol.266, pp.None, 2013, https://doi.org/10.1016/j.cma.2013.07.005