DOI QR코드

DOI QR Code

Movement and evolution of macromolecules in a grooved micro-channel

  • Zhou, L.W. (Institute of Mechanics, Chinese Academy of Sciences) ;
  • Liu, M.B. (Institute of Mechanics, Chinese Academy of Sciences) ;
  • Chang, J.Z. (School of Mechatronic Engineering, North University of China)
  • Received : 2013.03.10
  • Accepted : 2013.05.06
  • Published : 2013.09.01

Abstract

This paper presented an investigation of macromolecular suspension in a grooved channel by using the dissipative particle dynamics (DPD) with finitely extensible non-linear elastic (FENE) bead spring chains model. Before studying the movement and evolution of macromolecules, the DPD method was first validated by modeling the simple fluid flow in the grooved channel. For both simple fluid flow and macromolecular suspension, the flow fields were analyzed in detail. It is found that the structure of the grooved channel with sudden contraction and expansion strongly affects the velocity distribution. As the width of the channel reduces, the horizontal velocity increases simultaneously. Vortices can also be found at the top and bottom corners behind the contraction section. For macromolecular suspension, the macromolecular chains influence velocity and density distribution rather than the temperature and pressure. Macromolecules tend to drag simple fluid particles, reducing the velocity with density and velocity fluctuations. Particle trajectories and evolution of macromolecular conformation were investigated. The structure of the grooved channel with sudden contraction and expansion significantly influence the evolution of macromolecular conformation, while macromolecules display adaptivity to adjust their own conformation and angle to suit the structure so as to pass the channel smoothly.

Keywords

References

  1. Brazzle, J.D., Mohanty, S. and Frazier, A.B. (1999), "Hollow metallicmicromachined needles with multiple output ports", Conf. Microfluidic Device Systems, 3877, 257-266.
  2. Chen, S. and Doolen, G.E. (1998), "Lattice-boltzmann method for fluid flows", Annu. Rev. Fluid Mech., 30, 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  3. Chu, S. (1991), "Laser manipulation of atoms and particles", Science, 253, 861-866. https://doi.org/10.1126/science.253.5022.861
  4. Chun, K., Hashiguchi, G., Toshiyoshi, H. and Fujita, H. (1999), "Fabrication of array of hollow microcapillaries used for injection of genetic materials into animal/plant cells", Jpn. J. Appl. Phys., 38(2), 279-281. https://doi.org/10.1143/JJAP.38.279
  5. Doyle, P.S. and Shaqfeh, E.S.G. (1998), "Dynamics simulation of freely draining, flexible bead-rod chains: start-up of extensional flow", J. Non-Newton. Fluid Mech., 76(1), 43-78. https://doi.org/10.1016/S0377-0257(97)00112-2
  6. Doyle, P.S. and Shaqfeh, E.S.G. (1998), "Dynamics simulation of freely-draining, flexible bead-rod chains: startup of extensional flow", J. Non-Newton. Fluid Mech., 76(1), 43-78. https://doi.org/10.1016/S0377-0257(97)00112-2
  7. Doyle, P.S., Shaqfeh, E.S.G. and Gast, A.P. (1997), "Dynamics simulation of freely-draining, flexible polymers in steady linear flows", J. Fluid Mech., 334(1), 251-291. https://doi.org/10.1017/S0022112096004302
  8. Doyle, P.S., Shaqfeh, E.S.G., McKinley, G.H. and Spiegelberg, S.H. (1998), "Relaxation of fillet polymer-solutions following extensional flow", J. Non-Newton. Fluid Mech., 76(1), 79-110. https://doi.org/10.1016/S0377-0257(97)00113-4
  9. Duong-Hong, D., Wang, J.S., Liu, G.R., Chen, Y.Z., Han, J. and Hadjiconstantinou, Nicolas G. (2008), "Dissipative particle dynamics simulations of electroosmotic flowin nano-fluidic devices", Microfluid Nanofluid, 4(3), 219-225. https://doi.org/10.1007/s10404-007-0170-7
  10. Espanol, P. and Warren, P. (1995), "Statistical mechanics of dissipative particle dynamics", Europhys. Lett., 30(4), 191-196. https://doi.org/10.1209/0295-5075/30/4/001
  11. Fan, X., Phan-Thien, N., Yong, N.T., Wu, X. and Xu, D. (2003), "Microchannel flow of a macromolecular suspension", Phys. Fluids, 15(1), 11-21. https://doi.org/10.1063/1.1522750
  12. Fan, X., Nhan, P.T., Chen, S., Wu, X. and Ng, T.Y. (2006), "Simulating flow of DNA suspension using dissipative particle dynamics", Phys. Fluids, 18(6), 063102. https://doi.org/10.1063/1.2206595
  13. Frisch, U., Hasslachcher, B. and Pomeau, Y. (1986), "Lattice-gas automata for the navier-stokes equation", Phys. Rev. Lett., 56(14), 1505-1508. https://doi.org/10.1103/PhysRevLett.56.1505
  14. Groot, R.D. and Warren, P.B. (1997), "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation", J. Chem. Phys., 107(11), 4423-4435. https://doi.org/10.1063/1.474784
  15. Hoogerbrugge, P.J. and Koelman, J.M.V.A. (1992), "Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics", Europhys. Lett., 19(3), 155-160. https://doi.org/10.1209/0295-5075/19/3/001
  16. Hur, J.S., Shaqfeh, E.S.G. and Larson, R.G. (2000), "Brownian dynamics simulation of single DNA molecules in shear flow", J. Rheol., 44(4), 713-743. https://doi.org/10.1122/1.551115
  17. Kasiteropoulou, D., Karakasidis, T.E. and Liakopoulos, A. (2011), "A dissipative particle dynamics study of flow in periodically grooved nanochannels", Int. J. Numer. Meth. Fluids, 68(9), 1156-1172.
  18. Lin, L. and Pisano, A.P. (1999), "Silicon processed microneedles", IEEE J. Micromech.Syst., 8(1), 78-84. https://doi.org/10.1109/84.749406
  19. Pan, H., Ng, T.Y., Moeendarbary, H. and Li, E. (2010), "Dissipative particle dynamics simulation of entropic trapping for DNA separation", Sensor. Actuat., 157(2), 328-335. https://doi.org/10.1016/j.sna.2009.11.027
  20. Perkins, T.T., Quake, S.R., Smith, D.E. and Chu, S. (1994), "Relaxation of single DNA molecule observed by optical microscopy", Science, 264, 822-826. https://doi.org/10.1126/science.8171336
  21. Perkins, T.T., Smith, D.E. and Chu, S. (1994), "Direct observation of tube-like motion of a single polymer chain", Science, 264, 819-822. https://doi.org/10.1126/science.8171335
  22. Perkins, T.T., Smith, D.E. and Chu, S. (1997), "Single polymer dynamics in an elongational flow", Science, 276, 2016-2080. https://doi.org/10.1126/science.276.5321.2016
  23. Perkins, T.T., Smith, D.E., Larson, R.G. and Chu, S. (1995), "Stretching of a single tethered polymer in a uniform flow", Science, 268, 83-87. https://doi.org/10.1126/science.7701345
  24. Shrewsbury, P.J., Muller, S.J. and Liepmann, D. (2001), "Effect of flow on complex biological macromolecules in microfluidic devices", Biomed. Microdevices, 3(3), 225-238. https://doi.org/10.1023/A:1011415414667
  25. Smith, D.E., Babcock, H.P. and Chu, S. (1999), "Single-polymer dynamics in steady shear flow", Science, 283(5408), 1724-1727. https://doi.org/10.1126/science.283.5408.1724
  26. Smith, D.E. and Chu, S. (1998), "Response of flexible polymers to sudden elongation flow", Science, 281(5381), 1335-1340. https://doi.org/10.1126/science.281.5381.1335
  27. Smith, S.B., Finzi, L. and Bustamante, C. (1992), "Direct mechanical measurements of the elasticity of single DNA molecules", Science, 258, 1122-1126. https://doi.org/10.1126/science.1439819