DOI QR코드

DOI QR Code

A meshfree adaptive procedure for shells in the sheet metal forming applications

  • Guo, Yong (Livermore Software Technology Corporation) ;
  • Wu, C.T. (Livermore Software Technology Corporation) ;
  • Park, C.K. (National Crash Analysis Center (NCAC), The George Washington University)
  • Received : 2013.03.05
  • Accepted : 2013.05.05
  • Published : 2013.09.01

Abstract

In this paper, a meshfree shell adaptive procedure is developed for the applications in the sheet metal forming simulation. The meshfree shell formulation is based on the first-order shear deformable shell theory and utilizes the degenerated continuum and updated Lagrangian approach for the nonlinear analysis. For the sheet metal forming simulation, an h-type adaptivity based on the meshfree background cells is considered and a geometric error indicator is adopted. The enriched nodes in adaptivity are added to the centroids of the adaptive cells and their shape functions are computed using a first-order generalized meshfree (GMF) convex approximation. The GMF convex approximation provides a smooth and non-negative shape function that vanishes at the boundary, thus the enriched nodes have no influence outside the adapted cells and only the shape functions within the adaptive cells need to be re-computed. Based on this concept, a multi-level refinement procedure is developed which does not require the constraint equations to enforce the compatibility. With this approach the adaptive solution maintains the order of meshfree approximation with least computational cost. Two numerical examples are presented to demonstrate the performance of the proposed method in the adaptive shell analysis.

Keywords

References

  1. Arroyo, M. and Ortiz, M. (2006), "Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods", Int. J. Numer. Meth. Eng., 65(13), 2167-2202. https://doi.org/10.1002/nme.1534
  2. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22(2), 117-127. https://doi.org/10.1007/s004660050346
  3. Babuska, I. and Rheinboldt, W.C. (1978), "A posteriori error estimates for the finite element method", Int. J. Numer. Meth. Eng., 12(10), 1597-1615. https://doi.org/10.1002/nme.1620121010
  4. Baumann, M. and Schweizerhof, K. (1997), "Adaptive mesh generation of arbitrarily curved shell structures", Comput. Struct., 64(1-4), 209-220. https://doi.org/10.1016/S0045-7949(96)00134-4
  5. Belytschko, T., Liu, W.K. and Moran, B. (2000), Nonlinear finite elements for continua and structures, John Wiley & Sons, LTD, Chichester, West Sussex, England.
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free galerkin methods", Int. J. Numer. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  7. Belytschko, T. and Tabbara, M. (1993), "H-adaptive finite element methods for dynamic problems, with emphasis on localization", Int. J. Numer. Meth. Eng., 36(24), 4245-4265. https://doi.org/10.1002/nme.1620362409
  8. Blacker, T.D. and Stephenson, M.B. (1991), "Paving: a new approach to automated quadrilateral mesh generation", Int. J. Numer. Meth. Eng., 32(4), 811-847. https://doi.org/10.1002/nme.1620320410
  9. Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of non-linear structures", Comput. Methods Appl. Mech. Eng., 139(1-4), 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
  10. Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50(5), 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
  11. Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in Cartesian coordinates", Int. J. Numer. Meth. Eng., 68(2), 151-172. https://doi.org/10.1002/nme.1701
  12. Chung, H.J. and Belytschko, T. (1998), "An error estimate in the EFG method", Comput. Mech., 21(2), 91-100. https://doi.org/10.1007/s004660050286
  13. Deb, A., Prevost, J.H. and Loret, B. (1996), "Adaptive meshing for dynamic strain localization", Comput. Methods Appl. Mech. Eng., 137(3), 285-306. https://doi.org/10.1016/S0045-7825(96)01068-7
  14. Hallquist, J.O. (2003), LS-DYNA Theory manual.
  15. Hill, R. (1948), "A theory of the yielding and plastic flow of anisotropic metals", Proceedings of the Royal Society of London, Series A, 193, 281. https://doi.org/10.1098/rspa.1948.0045
  16. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math. Comput., 37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  17. Liu, G.R. and Tu, Z.H. (2002), "An adaptive procedure based on background cells for meshless methods", Comput. Methods Appl. Mech. Eng., 191(17-18), 1923-1943. https://doi.org/10.1016/S0045-7825(01)00360-7
  18. Liu, G.R. and Zhang, G.Y. (2008), "Upper bound solution to elasticity problems: A unique property of the linearly conforming point interpolation method (LC-PIM)", Int. J. Numer. Meth. Eng., 74(7), 1128-1161. https://doi.org/10.1002/nme.2204
  19. Liu, W.K., Jun, S., Li, S., Adee, J. and Belytschko, T. (1995a), "Reproducing kernel particle methods for structural dynamics", Int. J. Numer. Meth. Eng., 38(10), 1655-1679. https://doi.org/10.1002/nme.1620381005
  20. Liu, W.K., Jun, S. and Zhang, Y.F. (1995b), "Reproducing kernel particle methods", Int. J. Numer. Meth. Fluids, 20(8-9), 1081-1106. https://doi.org/10.1002/fld.1650200824
  21. Mar, A. and Hicks, M.A. (1996), "A benchmark computational study of finite element error estimation", Int. J. Numer. Meth. Eng., 39(23), 3969-3983. https://doi.org/10.1002/(SICI)1097-0207(19961215)39:23<3969::AID-NME32>3.0.CO;2-C
  22. Moes, N., Dolbow, J. and Belytschko, T. (1999), "A finite element method for crack growth without remeshing", Int. J. Numer. Meth. Eng., 46(1), 131-150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  23. Ortiz, M. and Quigley, J.J. (1991), "Adaptive mesh refinement in strain-localization problems", Comput. Meth. Appl. Mech. Eng., 90(1-3), 781-809. https://doi.org/10.1016/0045-7825(91)90184-8
  24. Pannachet, T., Sluys, L.J. and Askes, H. (2008), "Error estimation and adaptivity for discontinuous failure", Int. J. Numer. Meth. Eng., 78(5), 528-563.
  25. Park, C.K., Wu, C.T. and Kan, C.D. (2011), "On the analysis of dispersion property and stable time step in meshfree method using the generalized meshfree approximation", Finite Elem. Anal. Des., 47(7), 683-697. https://doi.org/10.1016/j.finel.2011.02.001
  26. Rabczuk, T. and Belystchko, T. (2005), "Adaptivity for structured meshfree particle methods in 2D and 3D", Int. J. Numer. Meth. Eng., 63(11), 1559-1582. https://doi.org/10.1002/nme.1326
  27. Riccius, J., Schweizerhof, K. and Baumann, M. (1997), "Combination of adaptivity and mesh smoothing for the finite element analysis of shell intersections", Int. J. Numer. Meth. Eng., 40(13), 2459-2474. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13<2459::AID-NME173>3.0.CO;2-K
  28. Sheffer, A. and de Sturler, E. (2001), "Parameterization of faceted surfaces for meshing using angle-based flattening", Eng. Comput., 17(3), 326-337. https://doi.org/10.1007/PL00013391
  29. Shepard, D. (1968), "A two-dimensional interpolation function for irregularly-spaced data", Proceedings of the 1968 ACM National Conference, New York, 517-524, DOI: 10.1145/800186.810616.
  30. Sukumar, N. (2004), "Construction of polygonal interpolants: a maximum entropy approach", Int. J. Numer. Meth. Eng., 61(12), 2159-2181. https://doi.org/10.1002/nme.1193
  31. Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation", Comput. Meth. Appl. Mech. Eng., 193(12-14), 1065-1083. https://doi.org/10.1016/j.cma.2003.12.006
  32. Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of hermite reproducing kernel galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48(1), 47-63. https://doi.org/10.1007/s00466-011-0580-y
  33. Wang, D. and Wu, Y. (2008), "An efficient galerkin meshfree analysis of shear deformable cylindrical panels", Interact. Multiscale Mech., 1(3), 339-355. https://doi.org/10.12989/imm.2008.1.3.339
  34. Wang, H.P., Wu, C.T., Guo, Y. and Botkin, M.E. (2009), "A coupled meshfree/finite element method for automotive crashworthiness simulations", Int. J. Impact Eng., 36(10-11), 1210-1222. https://doi.org/10.1016/j.ijimpeng.2009.03.004
  35. Wu, C.T. and Guo, Y. (2002), Development of coupled finite element/mesh-free method and mesh-free shell formulation, Technical Report, GM R&D Center.
  36. Wu, C.T. and Guo, Y. (2004), Development of an adaptive mesh-free shell algorithm and a parallelized coupled finite element/mesh-free shell method incorporating thickness stress for explicit dynamic analysis, Technical Report, GM R&D Center.
  37. Wu, C.T. and Koishi, M. (2009), "A meshfree procedure for the microscopic analysis of particle-reinforced rubber compounds", Interact. Multiscale Mech., 2(2), 147-169.
  38. Wu, C.T., Park, C.K. and Chen, J.S. (2011), "A generalized approximation for the meshfree analysis of solids", Int. J. Numer. Meth. Eng., 85(6), 693-722. https://doi.org/10.1002/nme.2991
  39. Wu, C.T. and Hu, W. (2011), "Meshfree-enriched simplex elements with strain smoothing for the finite element analysis of compressible and nearly incompressible solids", Comput. Methods Appl. Mech. Eng., 200(45-46), 2991-3010. https://doi.org/10.1016/j.cma.2011.06.013
  40. Wu, C.T., Hu, W. and Chen, J.S. (2012), "Meshfree-enriched finite element methods for the compressible and near-incompressible elasticity", Int. J. Numer. Meth. Eng., 90(7), 882-914. https://doi.org/10.1002/nme.3349
  41. Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineering analysis", Int. J. Numer. Meth. Eng., 24(2), 337-357. https://doi.org/10.1002/nme.1620240206

Cited by

  1. Adaptive finite element simulation of sheet forming process parameters 2016, https://doi.org/10.1016/j.jksues.2016.10.002
  2. Numerical simulation of sheet metal forming: a review vol.89, pp.1-4, 2017, https://doi.org/10.1007/s00170-016-9103-5
  3. Predictive and control models of the spring-back in thick hull plate forming pp.1960-6214, 2018, https://doi.org/10.1007/s12289-018-1437-0
  4. Numerical and experimental analysis on cold-forming and spring-back of hull plate pp.2041-3009, 2018, https://doi.org/10.1177/0954408918776827
  5. Spring-back analysis in the cold-forming process of ship hull plates vol.96, pp.5-8, 2018, https://doi.org/10.1007/s00170-018-1741-3