References
-
Ando, S., Gotoh, T. and Tonda, H. (2002), "Molecular dynamics simulation of
dislocation core structure in hexagonal-close-packed metals", Metall. Mater. Trans. A, 33(3), 823-829. https://doi.org/10.1007/s11661-002-1014-4 - Bacon, D. and Liang, M. (1986), "Computer simulation of dislocation cores in h.c.p. metals I. Interatomic potentials and stacking-fault stability", Phil. Mag. A, 53(2), 163-179. https://doi.org/10.1080/01418618608242819
- Bacon, D. and Martin, J. (1981), "The atomic structure of dislocations in h.c.p. metals I. Potentials and unstressed crystals", Phil. Mag. A, 43(4), 883-900. https://doi.org/10.1080/01418618108239498
- Bulatov, V.V. and Cai, W. (2006), Computer simulations in dislocations, Oxford University Press, New York.
- Conrad, H. and Robertson, W.D. (1957), AIME 209 503.
- Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29(12), 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
- Groh, S., Marin, E.B., Horstemeyer, M.F. and Bammann, D.J. (2009), "Dislocation motion in magnesium: a study by molecular statics and molecular dynamics", Model. Simul. Mater. Sc. Eng., 17(7), 075009. https://doi.org/10.1088/0965-0393/17/7/075009
- Hirth, J.P. and Lothe, J. (1992), Theory of dislocations, Krieger, Malabar, FL.
- Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
- Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
- Kainer, K.U. (2000), Magnesium alloys and their applications, Wiley-VCH, Weinheim.
- Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998), "Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58(17), 11085. https://doi.org/10.1103/PhysRevB.58.11085
- Kong, Y. and Shen, L. (2011), "Strengthening mechanism of metallic nanoscale multilayer with negative enthalpy of mixing", J. Appl. Phys., 110(7), 073522. https://doi.org/10.1063/1.3646560
- Leyson, G.P.M., Hector, L.G. and Jr., Curtin, W.A. (2012), "First-principles prediction of yield stress for basal slip in Mg-Al alloys", Acta Mater., 60(13-14), 5197-5203. https://doi.org/10.1016/j.actamat.2012.06.020
- Liu, X.Y., Adams, J.B., Ercolessi, F. and Moriarty, J.A. (1996), "EAM potential for magnesium from quantum mechanical forces", Model. Simul. Mater. Sc. Eng., 4, 293. https://doi.org/10.1088/0965-0393/4/3/004
- Mendelev, M.I., Asta, M., Rahman, M.J. and Hoyt, J.J. (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Phil. Mag., 89(34-36), 3269-3285. https://doi.org/10.1080/14786430903260727
- Nogaret, T., Curtin, W.A. and Yasi, J.A. (2010), "Atomistic study of edge and screw < c plus a > dislocations in magnesium", Acta. Mater., 58(13), 4332-4343. https://doi.org/10.1016/j.actamat.2010.04.022
- Olmsted, D.L., Hector, L.G. and Curtin, W.A. (2006), "Molecular dynamics study of solute strengthening in Al/Mg alloys", J. Mech. Phys. Solids, 54(8), 1763-1788. https://doi.org/10.1016/j.jmps.2005.12.008
- Osetsky, Y.N. and Bacon, D.J. (2003), "An atomic-level model for studying the dynamics of edge dislocations in metals", Model. Simul. Mater. Sc. Eng., 11, 427. https://doi.org/10.1088/0965-0393/11/4/302
- Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
- Reed-Hill, R.E. and Robertson, W.D. (1957), "Additional modes of deformation twinning in magnesium", Acta. Metal., 5(12), 717-727. https://doi.org/10.1016/0001-6160(57)90074-3
- Staroselsky, A. and Anand, L. (2003), "A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B", Int. J. Plast., 19(10), 1843-1864. https://doi.org/10.1016/S0749-6419(03)00039-1
- Sun, D.Y, Mendelev, M.I., Becker, C.A., Kudin, K., Haxhimali, T., Asta, M., Hoyt, J.J., Karma, A. and Srolovitz, D.J. (2006), "Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg", Phy. Rev. B, 73(2), 024116. https://doi.org/10.1103/PhysRevB.73.024116
- Tsuru, T., Udagawa, Y. and Yamaguchi, M. (2013), "Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip", J. Phys. Cond. Mater., 25(2), 022202. https://doi.org/10.1088/0953-8984/25/2/022202
- Yasi, J.A., Nogaret, T., Trinkle, D.R., Qi, Y., Hector, L.G. and Curtin, W.A. (2009), "Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions", Model. Simul. Mater. Sc. Eng., 17055012.
Cited by
- Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys vol.113, 2018, https://doi.org/10.1016/j.jpcs.2017.10.017
- ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339
- Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships vol.105, 2016, https://doi.org/10.1016/j.actamat.2015.12.038
- Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
- Glide mobility of the 1/2[1 1 0](0 0 1) edge dislocation in UO2 from molecular dynamics simulation vol.89, 2017, https://doi.org/10.1016/j.ijplas.2016.11.004
- Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
- Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271