DOI QR코드

DOI QR Code

Molecular dynamics study of Al solute-dislocation interactions in Mg alloys

  • Shen, Luming (School of Civil Engineering, The University of Sydney)
  • Received : 2013.03.22
  • Accepted : 2013.05.07
  • Published : 2013.09.01

Abstract

In this study, atomistic simulations are performed to study the effect of Al solute on the behaviour of edge dislocation in Mg alloys. After the dissociation of an Mg basal edge dislocation into two Shockley partials using molecular mechanics, the interaction between the dislocation and Al solute at different temperatures is studied using molecular dynamics. It appears from the simulations that the critical shear stress increases with the Al solute concentration. Comparing with the solute effect at T = 0 K, however, the critical shear stress at a finite temperature is lower since the kinetic energy of the atoms can help the dislocation conquer the energy barriers created by the Al atoms. The velocity of the edge dislocation decreases as the Al concentration increases when the external shear stress is relatively small regardless of temperature. The Al concentration effect on the dislocation velocity is not significant at very high shear stress level when the solute concentration is below 4.0 at%. Drag coefficient B increases with the Al concentration when the stress to temperature ratio is below 0.3 MPa/K, although the effect is more significant at low temperatures.

Keywords

References

  1. Ando, S., Gotoh, T. and Tonda, H. (2002), "Molecular dynamics simulation of dislocation core structure in hexagonal-close-packed metals", Metall. Mater. Trans. A, 33(3), 823-829. https://doi.org/10.1007/s11661-002-1014-4
  2. Bacon, D. and Liang, M. (1986), "Computer simulation of dislocation cores in h.c.p. metals I. Interatomic potentials and stacking-fault stability", Phil. Mag. A, 53(2), 163-179. https://doi.org/10.1080/01418618608242819
  3. Bacon, D. and Martin, J. (1981), "The atomic structure of dislocations in h.c.p. metals I. Potentials and unstressed crystals", Phil. Mag. A, 43(4), 883-900. https://doi.org/10.1080/01418618108239498
  4. Bulatov, V.V. and Cai, W. (2006), Computer simulations in dislocations, Oxford University Press, New York.
  5. Conrad, H. and Robertson, W.D. (1957), AIME 209 503.
  6. Daw, M.S. and Baskes, M.I. (1984), "Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B, 29(12), 6443-6453. https://doi.org/10.1103/PhysRevB.29.6443
  7. Groh, S., Marin, E.B., Horstemeyer, M.F. and Bammann, D.J. (2009), "Dislocation motion in magnesium: a study by molecular statics and molecular dynamics", Model. Simul. Mater. Sc. Eng., 17(7), 075009. https://doi.org/10.1088/0965-0393/17/7/075009
  8. Hirth, J.P. and Lothe, J. (1992), Theory of dislocations, Krieger, Malabar, FL.
  9. Hoover, W.G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Phys. Rev. A, 31(3), 1695-1697. https://doi.org/10.1103/PhysRevA.31.1695
  10. Humphrey, W., Dalke, A. and Schulten, K. (1996), "VMD: visual molecular dynamics", J. Mol. Graph., 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  11. Kainer, K.U. (2000), Magnesium alloys and their applications, Wiley-VCH, Weinheim.
  12. Kelchner, C.L., Plimpton, S.J. and Hamilton, J.C. (1998), "Dislocation nucleation and defect structure during surface indentation", Phys. Rev. B, 58(17), 11085. https://doi.org/10.1103/PhysRevB.58.11085
  13. Kong, Y. and Shen, L. (2011), "Strengthening mechanism of metallic nanoscale multilayer with negative enthalpy of mixing", J. Appl. Phys., 110(7), 073522. https://doi.org/10.1063/1.3646560
  14. Leyson, G.P.M., Hector, L.G. and Jr., Curtin, W.A. (2012), "First-principles prediction of yield stress for basal slip in Mg-Al alloys", Acta Mater., 60(13-14), 5197-5203. https://doi.org/10.1016/j.actamat.2012.06.020
  15. Liu, X.Y., Adams, J.B., Ercolessi, F. and Moriarty, J.A. (1996), "EAM potential for magnesium from quantum mechanical forces", Model. Simul. Mater. Sc. Eng., 4, 293. https://doi.org/10.1088/0965-0393/4/3/004
  16. Mendelev, M.I., Asta, M., Rahman, M.J. and Hoyt, J.J. (2009), "Development of interatomic potentials appropriate for simulation of solid-liquid interface properties in Al-Mg alloys", Phil. Mag., 89(34-36), 3269-3285. https://doi.org/10.1080/14786430903260727
  17. Nogaret, T., Curtin, W.A. and Yasi, J.A. (2010), "Atomistic study of edge and screw < c plus a > dislocations in magnesium", Acta. Mater., 58(13), 4332-4343. https://doi.org/10.1016/j.actamat.2010.04.022
  18. Olmsted, D.L., Hector, L.G. and Curtin, W.A. (2006), "Molecular dynamics study of solute strengthening in Al/Mg alloys", J. Mech. Phys. Solids, 54(8), 1763-1788. https://doi.org/10.1016/j.jmps.2005.12.008
  19. Osetsky, Y.N. and Bacon, D.J. (2003), "An atomic-level model for studying the dynamics of edge dislocations in metals", Model. Simul. Mater. Sc. Eng., 11, 427. https://doi.org/10.1088/0965-0393/11/4/302
  20. Plimpton, S.J. (1995), "Fast parallel algorithms for short-range molecular dynamics", J. Comput. Phys., 117, 1-19. https://doi.org/10.1006/jcph.1995.1039
  21. Reed-Hill, R.E. and Robertson, W.D. (1957), "Additional modes of deformation twinning in magnesium", Acta. Metal., 5(12), 717-727. https://doi.org/10.1016/0001-6160(57)90074-3
  22. Staroselsky, A. and Anand, L. (2003), "A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B", Int. J. Plast., 19(10), 1843-1864. https://doi.org/10.1016/S0749-6419(03)00039-1
  23. Sun, D.Y, Mendelev, M.I., Becker, C.A., Kudin, K., Haxhimali, T., Asta, M., Hoyt, J.J., Karma, A. and Srolovitz, D.J. (2006), "Crystal-melt interfacial free energies in hcp metals: a molecular dynamics study of Mg", Phy. Rev. B, 73(2), 024116. https://doi.org/10.1103/PhysRevB.73.024116
  24. Tsuru, T., Udagawa, Y. and Yamaguchi, M. (2013), "Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip", J. Phys. Cond. Mater., 25(2), 022202. https://doi.org/10.1088/0953-8984/25/2/022202
  25. Yasi, J.A., Nogaret, T., Trinkle, D.R., Qi, Y., Hector, L.G. and Curtin, W.A. (2009), "Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions", Model. Simul. Mater. Sc. Eng., 17055012.

Cited by

  1. Atomistic modeling of grain boundary behavior under shear conditions in magnesium and magnesium-based binary alloys vol.113, 2018, https://doi.org/10.1016/j.jpcs.2017.10.017
  2. ABC optimization of TMD parameters for tall buildings with soil structure interaction vol.6, pp.4, 2013, https://doi.org/10.12989/imm.2013.6.4.339
  3. Atomistic simulation of solid solution hardening in Mg/Al alloys: Examination of composition scaling and thermo-mechanical relationships vol.105, 2016, https://doi.org/10.1016/j.actamat.2015.12.038
  4. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.3, pp.4, 2014, https://doi.org/10.12989/csm.2014.3.4.329
  5. Glide mobility of the 1/2[1 1 0](0 0 1) edge dislocation in UO2 from molecular dynamics simulation vol.89, 2017, https://doi.org/10.1016/j.ijplas.2016.11.004
  6. Energy and force transition between atoms and continuum in quasicontinuum method vol.7, pp.1, 2014, https://doi.org/10.12989/imm.2014.7.1.543
  7. Molecular dynamics studies of interaction between hydrogenand carbon nano-carriers vol.6, pp.3, 2013, https://doi.org/10.12989/imm.2013.6.3.271