DOI QR코드

DOI QR Code

Meshfree consolidation analysis of saturated porous media with stabilized conforming nodal integration formulation

  • Received : 2013.03.05
  • Accepted : 2013.05.05
  • Published : 2013.09.01

Abstract

A strain smoothing meshfree formulation with stabilized conforming nodal integration is presented for modeling the consolidation process in saturated porous media. In the present method, nodal strain smoothing is consistently introduced into the meshfree approximation of strain and pore pressure gradient variables associated with the saturated porous media. Meanwhile, in order to achieve a consistent numerical implementation, a smoothing approximation of the meshfree shape function within a nodal representative domain is also proposed in the stiffness construction. The resulting discrete system of equations is all expressed in smoothed nodal measures that are very efficient for numerical evaluation. Subsequently the space-time fully discrete equations are further established by the generalized trapezoidal rule for time integration. The effectiveness of the proposed meshfree consolidation analysis method is systematically illustrated by several benchmark problems.

Keywords

References

  1. Atluri, S.N. and Shen, S.P. (2002), The Meshless Local Petrov-GalerkinMethod, Tech Science Press.
  2. Babuska, I., Banerjee, U. and Osborn, J.E. (2003), "Survey of meshless and generalized finite element methods: a unified approach", ActaNumer., 12(1), 1-125.
  3. Beissl, S. and Belytschko, T. (1996), "Nodal integration of the element-free Galerkin method", Comput.Meth.Appl. Mech. Eng., 139(1-4), 49-64. https://doi.org/10.1016/S0045-7825(96)01079-1
  4. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free gakerkin methods", Int. J. Num. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
  5. Biot, M.A. (1941), "General theory of three-dimensional consolidation", J.Appl. Phys., 12(2), 155-169. https://doi.org/10.1063/1.1712886
  6. Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid, I: Low-frequency-range", J. Acout. Soc. Ame., 28(2), 168-178. https://doi.org/10.1121/1.1908239
  7. Chen, J.S., Chi, S.W. and Hu, H.Y. (2011), "Recent developments in stabilized Galerkin and collocation meshfree methods", Comput. Assist. Mech. Eng. Sci., 18, 3-21.
  8. Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comput. Meth. Appl. Mech. Eng., 139(1-4), 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
  9. Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in cartesian coordinates", Int. J. Num. Meth. Eng., 68(2), 151-172. https://doi.org/10.1002/nme.1701
  10. Chen, J.S., Wu, C.T. and Belytschko, T. (2000), "Regularization of material instabilities by meshfree approximations with intrinsic length scales", Int. J. Num. Meth. Eng., 47(7), 1301-1322.
  11. Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 50(2), 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
  12. Chen, J.S., Yoon, S. and Wu, C.T. (2002), "Nonlinear version of stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 53(12), 2587-2615. https://doi.org/10.1002/nme.338
  13. Cheng, A.H.D. and Detournay, E. (1988), "A direct boundary element method for plane strain poro-elasticity", Int. J. Num. Anal.Meth.Geom., 12(5), 551-72. https://doi.org/10.1002/nag.1610120508
  14. Cui, L., Cheng, A.H.D. and Kaliakin, V.N. (1996), "Finite element analyses of anisotropic poroelasticity: a generalized mandel's problem and an inclined borehole problem", Int. J. Numer. Anal. Meth. Geom., 20(6), 381-401. https://doi.org/10.1002/(SICI)1096-9853(199606)20:6<381::AID-NAG826>3.0.CO;2-Y
  15. Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R. and Roth, M.J (2011), "Semi-lagrangian reproducing kernel particle method for fragment-impact problems", Int. J. Impact Eng., 38(12), 1033-1047. https://doi.org/10.1016/j.ijimpeng.2011.08.001
  16. Hughes, T.J.R. (2000), The finite element method: linear static and dynamic finite element analysis, Dover publications,Mineola, NY.
  17. Kaasschieter, E.F. and Frijns, A.J.H. (2003), "Squeezing a sponge: a three-dimensional a nalytical solution in poroelasticity", Comput. Geosci.,7(1), 49-59. https://doi.org/10.1023/A:1022423528367
  18. Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006), "Finite element analysis of poro-elastic consolidation in porous media: Mixed and standard approaches", Math., 195(9-12), 1096-1115.
  19. Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math.Comput.,37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
  20. Li, S. and Liu, W.K. (2004), MeshfreeParticle Methods, Springer-Verlag.
  21. Liu, G.R. (2009), Mesh Free Methods: Moving Beyond the Finite Element Mehod,2ndEdition, CRC Press.
  22. Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J.Numer.Fluids, 20(8-9), 1081-1106. https://doi.org/10.1002/fld.1650200824
  23. Murad, M. and Loula, A. (1992), "Improved accuracy in finite element analysis of Biot's consolidation problem", Comput.Meth. Appl. Mech. Eng., 95(3), 359-382. https://doi.org/10.1016/0045-7825(92)90193-N
  24. Samimi, S. and Pak, A. (2012), "Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method", Comput.Geotech.,46, 75-83. https://doi.org/10.1016/j.compgeo.2012.06.004
  25. Schonewald, A., Soares, D. and von Estorff, O. (2012), "A smoothed radial point interpolation method for application in porodynamics", Computat. Mech., 50(4), 433-443 https://doi.org/10.1007/s00466-012-0682-1
  26. Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfreemindlin-reissner plate formulation", Comput. Meth. Appl. Mech. Eng., 193(12-14), 1065-1083. https://doi.org/10.1016/j.cma.2003.12.006
  27. Wang, D. and Chen, J.S. (2008), "A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration", Int. J. Numer. Meth. Eng., 74(3), 368-390. https://doi.org/10.1002/nme.2175
  28. Wang, D., Li, Z., Li, L. and Wu, Y. (2011), "Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium", Sci. China-Technol. Sci.,54(3), 573-580. https://doi.org/10.1007/s11431-010-4287-7
  29. Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of hermite reproducing kernel galerkinmeshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48(1), 47-63. https://doi.org/10.1007/s00466-011-0580-y
  30. Zienkiewicz, O.C. and Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution", Int. J. Numer. Anal. Meth. Geom., 8(1), 71-96. https://doi.org/10.1002/nag.1610080106

Cited by

  1. Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.A1600671
  2. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0467-5