References
- Atluri, S.N. and Shen, S.P. (2002), The Meshless Local Petrov-GalerkinMethod, Tech Science Press.
- Babuska, I., Banerjee, U. and Osborn, J.E. (2003), "Survey of meshless and generalized finite element methods: a unified approach", ActaNumer., 12(1), 1-125.
- Beissl, S. and Belytschko, T. (1996), "Nodal integration of the element-free Galerkin method", Comput.Meth.Appl. Mech. Eng., 139(1-4), 49-64. https://doi.org/10.1016/S0045-7825(96)01079-1
- Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element-free gakerkin methods", Int. J. Num. Meth. Eng., 37(2), 229-256. https://doi.org/10.1002/nme.1620370205
- Biot, M.A. (1941), "General theory of three-dimensional consolidation", J.Appl. Phys., 12(2), 155-169. https://doi.org/10.1063/1.1712886
- Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid, I: Low-frequency-range", J. Acout. Soc. Ame., 28(2), 168-178. https://doi.org/10.1121/1.1908239
- Chen, J.S., Chi, S.W. and Hu, H.Y. (2011), "Recent developments in stabilized Galerkin and collocation meshfree methods", Comput. Assist. Mech. Eng. Sci., 18, 3-21.
- Chen, J.S., Pan, C., Wu, C.T. and Liu, W.K. (1996), "Reproducing kernel particle methods for large deformation analysis of nonlinear structures", Comput. Meth. Appl. Mech. Eng., 139(1-4), 195-227. https://doi.org/10.1016/S0045-7825(96)01083-3
- Chen, J.S. and Wang, D. (2006), "A constrained reproducing kernel particle formulation for shear deformable shell in cartesian coordinates", Int. J. Num. Meth. Eng., 68(2), 151-172. https://doi.org/10.1002/nme.1701
- Chen, J.S., Wu, C.T. and Belytschko, T. (2000), "Regularization of material instabilities by meshfree approximations with intrinsic length scales", Int. J. Num. Meth. Eng., 47(7), 1301-1322.
- Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 50(2), 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
- Chen, J.S., Yoon, S. and Wu, C.T. (2002), "Nonlinear version of stabilized conforming nodal integration for Galerkinmeshfree methods", Int. J. Num. Meth. Eng., 53(12), 2587-2615. https://doi.org/10.1002/nme.338
- Cheng, A.H.D. and Detournay, E. (1988), "A direct boundary element method for plane strain poro-elasticity", Int. J. Num. Anal.Meth.Geom., 12(5), 551-72. https://doi.org/10.1002/nag.1610120508
- Cui, L., Cheng, A.H.D. and Kaliakin, V.N. (1996), "Finite element analyses of anisotropic poroelasticity: a generalized mandel's problem and an inclined borehole problem", Int. J. Numer. Anal. Meth. Geom., 20(6), 381-401. https://doi.org/10.1002/(SICI)1096-9853(199606)20:6<381::AID-NAG826>3.0.CO;2-Y
- Guan, P.C., Chi, S.W., Chen, J.S., Slawson, T.R. and Roth, M.J (2011), "Semi-lagrangian reproducing kernel particle method for fragment-impact problems", Int. J. Impact Eng., 38(12), 1033-1047. https://doi.org/10.1016/j.ijimpeng.2011.08.001
- Hughes, T.J.R. (2000), The finite element method: linear static and dynamic finite element analysis, Dover publications,Mineola, NY.
- Kaasschieter, E.F. and Frijns, A.J.H. (2003), "Squeezing a sponge: a three-dimensional a nalytical solution in poroelasticity", Comput. Geosci.,7(1), 49-59. https://doi.org/10.1023/A:1022423528367
- Korsawe, J., Starke, G., Wang, W. and Kolditz, O. (2006), "Finite element analysis of poro-elastic consolidation in porous media: Mixed and standard approaches", Math., 195(9-12), 1096-1115.
- Lancaster, P. and Salkauskas, K. (1981), "Surfaces generated by moving least squares methods", Math.Comput.,37(155), 141-158. https://doi.org/10.1090/S0025-5718-1981-0616367-1
- Li, S. and Liu, W.K. (2004), MeshfreeParticle Methods, Springer-Verlag.
- Liu, G.R. (2009), Mesh Free Methods: Moving Beyond the Finite Element Mehod,2ndEdition, CRC Press.
- Liu, W.K., Jun, S. and Zhang, Y.F. (1995), "Reproducing kernel particle methods", Int. J.Numer.Fluids, 20(8-9), 1081-1106. https://doi.org/10.1002/fld.1650200824
- Murad, M. and Loula, A. (1992), "Improved accuracy in finite element analysis of Biot's consolidation problem", Comput.Meth. Appl. Mech. Eng., 95(3), 359-382. https://doi.org/10.1016/0045-7825(92)90193-N
- Samimi, S. and Pak, A. (2012), "Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method", Comput.Geotech.,46, 75-83. https://doi.org/10.1016/j.compgeo.2012.06.004
- Schonewald, A., Soares, D. and von Estorff, O. (2012), "A smoothed radial point interpolation method for application in porodynamics", Computat. Mech., 50(4), 433-443 https://doi.org/10.1007/s00466-012-0682-1
- Wang, D. and Chen, J.S. (2004), "Locking-free stabilized conforming nodal integration for meshfreemindlin-reissner plate formulation", Comput. Meth. Appl. Mech. Eng., 193(12-14), 1065-1083. https://doi.org/10.1016/j.cma.2003.12.006
- Wang, D. and Chen, J.S. (2008), "A Hermite reproducing kernel approximation for thin plate analysis with sub-domain stabilized conforming integration", Int. J. Numer. Meth. Eng., 74(3), 368-390. https://doi.org/10.1002/nme.2175
- Wang, D., Li, Z., Li, L. and Wu, Y. (2011), "Three dimensional efficient meshfree simulation of large deformation failure evolution in soil medium", Sci. China-Technol. Sci.,54(3), 573-580. https://doi.org/10.1007/s11431-010-4287-7
- Wang, D. and Lin, Z. (2011), "Dispersion and transient analyses of hermite reproducing kernel galerkinmeshfree method with sub-domain stabilized conforming integration for thin beam and plate structures", Comput. Mech., 48(1), 47-63. https://doi.org/10.1007/s00466-011-0580-y
- Zienkiewicz, O.C. and Shiomi, T. (1984), "Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution", Int. J. Numer. Anal. Meth. Geom., 8(1), 71-96. https://doi.org/10.1002/nag.1610080106
Cited by
- Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method vol.18, pp.12, 2017, https://doi.org/10.1631/jzus.A1600671
- A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations pp.2095-2449, 2018, https://doi.org/10.1007/s11709-018-0467-5