참고문헌
- American Concrete Institute (ACI) (2008), ACI 209.2R-08: Guide for modeling and calculating shrinkage and creep in hardened concrete, ACI Committee, Technical document.
- Aydin, A.C., Tortum, A. and Yavuz, M. (2006), "Prediction of concrete elastic modulus using adaptive neuro fuzzy inference system", Civ. Eng. Environ. Syst., 23(4), 295-309. https://doi.org/10.1080/10286600600772348
- Bai, Y., Darcy, P. and Basheer, P.A.M. (2005), "Strength and drying shrinkage properties concrete containing furnace bottom ash fine aggregate", Constr. Build. Mater., 19(9), 691-697. https://doi.org/10.1016/j.conbuildmat.2005.02.021
- Ballim, Y. (2000), "The effect of shale in quartzite aggregate on the creep and shrinkage of concrete - A comparison with RILEM model B3", Mater. Struct., 33(4), 235-242. https://doi.org/10.1007/BF02479333
- Bazant, Z.P. (1995), "Creep and shrinkage prediction model for analysis and design of concrete structures - Model B3", Mater. Struct., 28(6), 357-365. https://doi.org/10.1007/BF02473152
- Bazant, P.Z. and Baweja, S. (2000), "Creep and shrinkage prediction model for analysis and design of concrete structures: Model B3", Adam Neville Symposium: Creep and Shrinkage - Structural Design Effects, ACI SP 194, Farmington Hills, MI.
- Benboudjema, F., Meftah, F. and Torrenti, J.M. (2005), "Interaction between drying, shrinkage, creep and cracking phenomena in concrete", Eng. Struct., 27(2), 239-250. https://doi.org/10.1016/j.engstruct.2004.09.012
- Bouzoubaa, N. and Lachemi, M. (2001), "Self-compacting concrete incorporating high volumes of class F fly ash - Preliminary results", Cement Concrete. Res., 31(3), 413-420. https://doi.org/10.1016/S0008-8846(00)00504-4
- Boverie, S., Demaya, B., Le Quellec, J.M. and Titli, A. (1993), "Contribution of fuzzy logic control to the improvement of modern car performances", Control Eng. Pract., 1(2), 291-297. https://doi.org/10.1016/0967-0661(93)91619-8
- Branson, D.E. and Christiason, M.L. (1971), "Time dependent concrete properties related to design - Strength and elastic properties, creep and shrinkage", Symposium on Creep, Shrinakge and Temperature Effects, SP-27-13, American Concrete Institute, Detroid, Jan.
- Brooks, J. (2003), Elasticity, shrinkage, creep and thermal movement, (Eds. Newman, J. and Choo, B.S.), Advanced Concrete Technology - Testing and Quality, Elsevier, London.
- Chak, C.K., Feng, G. and Palaniswami, M. (1997), Implementation of fuzzy systems, (Ed. Leondes, C.T.), Fuzzy logic and expert system applications, Vol. 6, 1st Edition, Academic Press, London.
- Coley, D.A. (1999), An introduction to genetic algorithms for scientists and engineers, World Scientific, Singapore.
- Comite Euro-International Du Beton (CEB) (1993), CEB-FIP model code 1990, CEB Bulletin d'Information No. 213/214, Lausanne, Switzerland.
- Comite Euro-International Du Beton (CEB) (1999), Structural concrete: Behaviour, design and performance - Updated knowledge of the CEB FIP model code 1990, fib Bulletin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland.
- da Silva, W.R.L. and ?temberk, P. (2013)a, "Expert system applied for classifying self-compacting concrete surface finish", Adv. Eng. Soft., 64(0), 47-61, DOI: 10.1016/j.advengsoft.2013.04.005.
- da Silva, W.R.L. and ?temberk, P. (2013)b, "Shooting-inspired fuzzy logic expert system for ready-mixed concrete plants", J. Intel. Fuzzy Sys., 25(2), 481-491, DOI: 10.3233/IFS-120655.
- European Committee for Standardization (EN) (2004), Eurocode 2 (BS EN 1992), Design of concrete structures - Part 1-1: General rules and rules for buildings, European Committee for Standardization, Brussels.
- Gao, F.L. (1997), "A new way of predicting cement strength - Fuzzy logic", Cement Concrete. Res., 27(6), 883-888. https://doi.org/10.1016/S0008-8846(97)00081-1
- Gardner, N.J. and Zhao, J.W. (1993), "Creep and shrinkage revisited", ACI Mater. J., 90(3), 236-246.
- Gardner, N.J. (2004), "Comparison of prediction provisions for drying shrinkage and creep of normal strength concretes", Can. J. Civil Eng., 31(5), 767-775. https://doi.org/10.1139/l04-046
- Graham, I. (1991), "Fuzzy logic in commercial expert systems - results and prospects", Fuzzy Set. Syst., 40(3), 451-472. https://doi.org/10.1016/0165-0114(91)90172-M
- Guneyisi, E., Gesoglu, M. and Ozbay, E. (2010), "Strength and drying shrinkage properties of self-compacting concretes incorporating multi-system blended mineral admixtures", Constr. Build. Mater., 24(10), 1878-1887. https://doi.org/10.1016/j.conbuildmat.2010.04.015
- Guneyisi, E., Gesoglu, M. and Mermerdas, K. (2008), "Improving strength, drying shrinkage, and pore structure of concrete using metakaolin", Mater. Struct., 41(5), 937-949. https://doi.org/10.1617/s11527-007-9296-z
- Han, K.H. and Kim, J.H. (2002), "Quantum-inspired evolutionary algorithm for a class of combinatorial optimization", IEEE T. Evolut. Comput., 6(6), 580-593. https://doi.org/10.1109/TEVC.2002.804320
- Hellendoorn, H. and Thomas, C. (1993), "Defuzzification in fuzzy controllers", J. Int. Fuzzy Syst., 1(2), 109-123.
- Holmblad, L.P. and Ostergaard, J.J. (1982), Control of a cement kiln by fuzzy logic, (Eds. Gupta, M.M. and Sanchez, E.), Fuzzy Information and Decision Processes, North-Holland, Amsterdam.
- Idorn, G.M. (2005), "Innovation in concrete research - review and perspective", Cement Concrete Res., 35(1), 3-10. https://doi.org/10.1016/j.cemconres.2004.09.006
- Illston, J.M. and Domone, P.L.J. (2010), Construction materials: Their nature and behaviour, Spon Press, London.
- Imamoto, K. and Arai, M. (2008) "Specific surface area of aggregate and its relation to concrete drying shrinkage", Mater. Struct., 41(2) 323-333. https://doi.org/10.1617/s11527-007-9245-x
- Lee, K.H. (2004), First course on fuzzy theory and applications, Advances in Soft Computing, Vol. 27, 1st Edition, Springer, Berlin.
- Leemann, A., Lura, P. and Loser, R. (2011), "Shrinkage and creep of SCC - The influence of paste volume and binder composition", Constr. Build. Mater., 25(5), 2283-2289. https://doi.org/10.1016/j.conbuildmat.2010.11.019
- Ling, F. and Meyer, C. (2008), "Modeling shrinkage of Portland cement paste", ACI Mater. J., 105(3), 302-311.
- Loser, R. and Leemann, A. (2009), "Shrinkage and restrained shrinkage cracking of self-compacting concrete compared to conventionally vibrated concrete", Mater. Struct., 42(1), 71-82. https://doi.org/10.1617/s11527-008-9367-9
- Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. Man Machine Studies, 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
- Mcdonald, D.B. and Roper, H. (1993), "Accuracy of prediction models for shrinkage of concrete", ACI Mater. J., 90(3), 265-271.
- Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties and Materials, McGrawHill, NY.
- Mitchell, M. (1998), An introduction to genetic algorithms (Complex adaptive systems), A Bradford Book, MIT Press MA.
- Nguyen, H.T., Prasad, N.R., Walker, C.L. and Walker, E.A. (2002), A First Course in Fuzzy and Neural Control, Chapman and Hall/CRC, London.
- Pezeshk, S., Camp, C.V. and Chen, D. (2000), "Design of nonlinear framed structures using genetic optimization", ASCE J. Struct. Eng., 126(3), 382-388. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:3(382)
- Pichler, C., Lackner, R. and Mang, H.A. (2007), "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials", Eng. Fract. Mech., 74(1-2), 34-58. https://doi.org/10.1016/j.engfracmech.2006.01.034
- Pokorna, N. and ?temberk, P. (2010), "Fuzzy Logic Model for Description of Fatigue Behavior of Concrete", Proceedings of 15th International Conference - Mechanika 2010, pages 351-355, Kaunas Univ. Technol., Kaunas, Lithuania.
- Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2007), "Active control of high rise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-347. https://doi.org/10.1016/j.engstruct.2006.04.015
- Ray, I., Gong, Z., Davalos, J.F. and Kar, A. (2012), "Shrinkage and cracking studies of high performance concrete for bridges decks", Constr.. Build. Mater., 28, 244-254. https://doi.org/10.1016/j.conbuildmat.2011.08.066
- Rokonuzzaman, Md. and Sakai, T. (2010), "Calibration of the parameters for a hardening-softening constitutive model using genetic algorithms", Comput. Geotech., 37(4), 573-579. https://doi.org/10.1016/j.compgeo.2010.02.007
- Roziere, E., Granger, S., Turcry, Ph. and Loukili, A. (2007), "Influence of paste volume on shrinkage cracking and fracture properties of self-compacting concrete", Cement Concrete. Compos., 29, 626-636. https://doi.org/10.1016/j.cemconcomp.2007.03.010
- Skarendahl, A. (2005), "Changing concrete construction through use of self-compacting concrete", Proceedings of the 1st Int. Symposium on design, performance and use of self-consolidating concrete, China, May.
- Stemberk, P. and Rainova, A. (2011), "Simulation of hydration and cracking propagation with temperature effect based on fuzzy logic theory", Mechanika, 17(4), 358-362.
- Tanyildizi, H. (2009), "Fuzzy logic model for the prediction of bond strength of high-strength lightweight concrete", Adv. Eng. Softw., 40(3), 161-169. https://doi.org/10.1016/j.advengsoft.2007.05.013
- White, A.J. and Newtson, C.M. (2006), "Effects of mixture proportions on concrete shrinkage", Proceedings of the 2nd International Congress, Naples, June.
- Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- Zhao, Z. and Chen, C. (2001), "Concrete bridge deterioration diagnosis using fuzzy inference system", Adv. Eng. Softw., 32(4), 317-325. https://doi.org/10.1016/S0965-9978(00)00089-2
피인용 문헌
- Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming vol.14, pp.4, 2014, https://doi.org/10.12989/cac.2014.14.4.479
- Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete vol.19, pp.2, 2013, https://doi.org/10.12989/cac.2017.19.2.203
- The effect of the new stopping criterion on the genetic algorithm performance vol.27, pp.1, 2021, https://doi.org/10.12989/cac.2021.27.1.063