References
- American Concrete Institute, ACI 365 1R-00 (2000), Service Life Prediction, State of the Art Report, Detroit, USA.
- American Concrete Institute, ACI (2005), Building Code Requirements for Structural Concrete, ACI 318-05, Detroit, USA.
- Bamforth, P.B. and Price, W.F. (1996), "An international review of chloride ingress into structural concrete", Taywood Engineering Ltd.,Technology Division, Middlesex.
- Bentz, E.C. (2003), "Probabilistic modeling of service life for structures subjected to chlorides", ACI Mater. J., 100(5), 391-397.
- Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30, 227-238. https://doi.org/10.1016/j.cemconcomp.2006.10.007
- Cheng, J, Li, Q.S. and Xiao, R.C. (2008), "A new artificial neural network-based response surface method for structural reliability analysis", J. Struct. Eng. Mech., 23, 51-63.
- Chryssanthopoulos, M. and Sterritt, G. (2002), "Integration of deterioration modeling and reliability assessment for reinforced concrete bridge structures", First ASRANet international colloquium (CD- ROM).
- Duprat, F. (2007), "Reliability of RC beams under chloride ingress", Constr. Build. Mater., 21, 1605-1616. https://doi.org/10.1016/j.conbuildmat.2006.08.002
- Duracrete (2000), Final Technical Report: Probabilistic performance based durability design of concrete structures, The European Union- BriteEuRam III.
- El Maaddawy, T. and Soudki, K. (2007), "A model for prediction of time from corrosion initiation to corrosion cracking", Cement Concrete Compos., 29(3), 168-175. https://doi.org/10.1016/j.cemconcomp.2006.11.004
- Engelund, S. and Sorensen, J.D. (1998), "A Probabilistic model for chloride ingress and initiation of corrosion in reinforced Concrete Structures", Struct. Safety, 20, 69-89. https://doi.org/10.1016/S0167-4730(97)00022-2
- Fib (CEB-FIP)(2006), Model Code foe Service Life Design.
- Frangopol, D.M., Lin, K.Y. and Estes, A.C. (1997), "Life-cycle cost design of deteriorating structures", J. Struct. Eng. ASCE, 123, 1390-1401. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390)
- Hagan, M.T., Demuth, H. and Beale, M. (1996), Neural Network Design, PWS Publishing Company.
- Hornik, K. (1991), "Approximation capabilities of multilayer feedforward networks", Neural Networks, 4(2), 251- 257 https://doi.org/10.1016/0893-6080(91)90009-T
- Hurtado, J.E. and Alvarez, D.A. (2001), "Neural network based reliability analysis: A comparative study", Comput. Meth. Appl. Mech. Eng., 191, 113-132 https://doi.org/10.1016/S0045-7825(01)00248-1
- Hurtado, J.E. (2002), "Analysis of one-dimensional stochastic finite elements using neural networks", Probabil. Eng. Mech., 17, 35-44. https://doi.org/10.1016/S0266-8920(01)00011-X
- Karimi, A.R., Ramachandran, K. and Buenfeld, N. (2005), "Probabilistic analysis of reinforcement corrosion with spatial variability using random field theory", Proceedings of the Ninth International Conference on Structural Safety and Reliability, ICOSSAR 05. Rome, Italy.
- Kong, J.K. Ababneh, A.N., Frangopol, D.M. and Xi, Y. (2002), "Reliability analysis of chloride penetration in saturated concrete", Probabil. Eng. Mech., 17, 305-315. https://doi.org/10.1016/S0266-8920(02)00014-0
- Li, C. and Der Kiureghian, A. (1993), "Optimal discretization of random fields", J. Eng. Mech. ASCE, 119, 1136-1154. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136)
- Li, C.Q. (2003), "Life cycle modeling of corrosion affected concrete structures-propagation", J. Struct. Eng., ASCE, 129(6) ,753-776. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(753)
- Li, C.Q., Melchers, R.E. and Zheng J.J. (2006), "Analytical model for corrosion-induced crack width in reinforced concrete structures", ACI Struct. J., 103(4), 479-487.
- Li, Y., Vrouwenvelder, T., Wijnants, G.H. and Walraven, J. (2004), "Spatial variability of concrete deterioration and repair strategies", Struct.Concrete, 5(3), 121-130. https://doi.org/10.1680/stco.2004.5.3.121
- Liu, Y. and Weyers, R.E. (1998), "Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures", ACI Mater J., 95(6), 675-181.
- McKay, M.D., Conover, W.J. and Beckman, R.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of the output from a computer code", Technometrics, 21(2), 239-245.
- Most, T. and Bucher, C. (2007), "Probabilistic analysis of concrete cracking using neural networks and random fields", Probabil. Eng. Mech., 22, 219-229. https://doi.org/10.1016/j.probengmech.2006.11.001
- Nataf, A. (1962), "Determination des distributions de probabilities don't les margessontdonnees", ComptesRendus de l'Academie des Sciences, 225, 42-43.
- Olsson, A., Sandberg, G. and Dahlblom, O. (2003), "On Latin hypercube sampling for structural reliability analysis", Struct. Safety, 25, 47-68. https://doi.org/10.1016/S0167-4730(02)00039-5
- Papadakis, V.G., Roumeliotis, A.P., Fardis, M.N. and Vagenas, C.G. (1996), "Mathematical modeling of chloride effect on concrete durability and protection measures", (Eds. Dhir, R.K. and Jones, M.R.) Concrete repair, rehabilitation and protection, London.
- Papadrakakis, M., Papadopoulos, V. and Lagaros, N.D. (1996), "Structural reliability analysis of elastic-plastic structures using neural networks and monte carlo simulation", Comput. Meth. Appl. Mech. Eng., 136, 145-163. https://doi.org/10.1016/0045-7825(96)01011-0
- Poupard, O., L'Hostis, V., Catinaud, S. and Petre-Lazar, I. (2006), "Corrosion damage diagnosis of a reinforced concrete beam after 40 years natural exposure in marine environment", Cement Concrete Res., 36, 504-520. https://doi.org/10.1016/j.cemconres.2005.11.004
- Schueller, G.I. (1997), "A state of-the-art report on computational stochastic mechanics", Probabil. Eng. Mech., 12(4),197-231. https://doi.org/10.1016/S0266-8920(97)00003-9
- Stewrat, M.G. and Mullard, J.A. (2008), "Spatial time-dependent reliability analysis of corrosion damage and the timing of first repair for RC structures", Eng. Struct, 29(7), 1457-1464
- Sudret, B., Defaux, G. and Pendola, M. (2007), "Stochastic evaluation of the damage length in RC beams submitted to corrosion of reinforcing steel", Civil Eng. Envir. Syst., 24(2),165-178. https://doi.org/10.1080/10286600601159305
- Sudret, B. and Der Kiureghian, A. (2000), "Stochastic finite element methods and reliability: a state of the art report", Department of Civil and Environmental Engineering University of California, Berkeley.
- VanMarcke, E. (1984), Random fields, analysis and synthesis, MIT Press.
- Vu, K.A.T., Stewart, M.G. and Mullard, J. (2005), "Corrosion-induced cracking: experimental data and predictive models", ACI Struct. J., 102(5), 719-726.
- Vu, K.A.T. and Stewart, M.G. (2005), "Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking", J. Struct. Eng., 131(11), 1681-1689. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:11(1681)
Cited by
- The use of artificial neural networks in predicting ASR of concrete containing nano-silica vol.13, pp.6, 2014, https://doi.org/10.12989/cac.2014.13.6.739
- Prediction of the remaining service life of existing concrete bridges in infrastructural networks based on carbonation and chloride ingress vol.21, pp.3, 2013, https://doi.org/10.12989/sss.2018.21.3.305
- Mesoscale model for cracking of concrete cover induced by reinforcement corrosion vol.22, pp.1, 2013, https://doi.org/10.12989/cac.2018.22.1.053
- Reliability index assessment by different methods in the concrete bridges subjected to corrosion vol.4, pp.4, 2019, https://doi.org/10.1080/24705314.2019.1657706
- Critical review of data-driven decision-making in bridge operation and maintenance vol.18, pp.1, 2013, https://doi.org/10.1080/15732479.2020.1833946