참고문헌
- Atrushi, D. and Bosnjak, D. (2000), "Tensile creep of young high performance concrete", 3rd International PhD Symposium in Civil Engineering, Vienna.
- Ballim, Y. (2004), "A numerical model and associated calorimeter for predicting temperature profiles in mass concrete", Cement Concrete Comp., 26(6), 695-703. https://doi.org/10.1016/S0958-9465(03)00093-3
- Bazant, Z.P. (1984), "Double-power logarithmic law for concrete creep", Cement Concrete Res., 14(6), 793-806. https://doi.org/10.1016/0008-8846(84)90004-8
- Breugel, V.K. (1998), "Prediction of temperature development in hardening concrete", Prevention of thermal cracking in concrete at early ages, Editor Springenschmid, R., RILEM Report 15, E. Spon, London.
- Broda, M., Wirquin, E. and Duthoit, B. (2002), "Conception of an isothermal calorimeter for concrete determination of the apparent activation energy", Mater. Struct., 35(7), 389-394.
- Farry, A.L.A., Bijen, J.M. and Haan, Y.M. (1989), "The reaction of fly ash in concrete, a critical examination", Cement Concrete Res., 19(2), 235-246. https://doi.org/10.1016/0008-8846(89)90088-4
- Lu,G., Li, XB. And Wang, K. and Kejin, W. (2012), "A numerical study on the damage of projectile impact on concrete targets", Comput. Concrete, 9(1), 21-33. https://doi.org/10.12989/cac.2012.9.1.021
- Gutsch, A.W. (2002), "Properties of early age concrete-experiments and modeling", Mater. Struct., 35(2), 76-79.
- Hans, B., Mark, A. and Yunus, B. (2012), "Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios", Construct. Build. Mater., 29(4), 533-540. https://doi.org/10.1016/j.conbuildmat.2011.06.018
- Hansen, P.F. and Pedersen, J. (1977), "Maturity computer of controlled curing and hardening of concrete". Nordisk Betong, 1, 19-34.
- Kahouadji, A., Clastres, P. and Debicki, G. (1997), "Early-age compressive strength prediction of concrete - application on a construction site", Construct. Build. Mater., 11(7-8), 431-436. https://doi.org/10.1016/S0950-0618(97)00022-6
- Kim, T.H., Park, J.G., Kim, Y.J. and Shin, H.M. (2008), "A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars", Comput. Concrete, 5(2), 135-154. https://doi.org/10.12989/cac.2008.5.2.135
- Kim, T.H., Cheon, J.H. and Shin, H.M. (2012), " Evaluation of behavior and strength of prestressed concrete deep beams using nonlinear analysis", Comput. Concrete, 9(1), 63-79. https://doi.org/10.12989/cac.2012.9.1.063
- Kjellsen, K.O., Detwiler, R.J. and Gjorv, O.E. (1991), "Development of microstructure in plain cement pastes hydrated at different temperatures", Cement Concrete Res., 21(1), 179-189. https://doi.org/10.1016/0008-8846(91)90044-I
- Jiachun, W. and Peiyu, Y. (2007), "Apparent activation energy of concrete in early age determined by adiabatic test", J. Wuhan U. Tech., 22(5), 537-541. https://doi.org/10.1007/s11595-006-3537-9
- Lu, W.Y., Hwang, S.J. and Lin, I.J. (2010), "Deflection prediction for reinforced concrete deep beams", Comput. Concrete, 7(1), 1-16. https://doi.org/10.12989/cac.2010.7.1.001
- Maria, K. (2002), "Early age properties of high-strength/high-performance concrete", Cement Concrete Comp., 24(2), 253-261. https://doi.org/10.1016/S0958-9465(01)00014-2
- Schutter, G. (2002), "Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws", Comput. Struct., 80(27-30), 2035-2042. https://doi.org/10.1016/S0045-7949(02)00270-5
- Schutter, G. (2002), "Fundamental study of early age concrete behaviour as a basis for durable concrete structures", Mater. Struct., 35(1), 15-21. https://doi.org/10.1007/BF02482085
- Sukumar, B., Nagamani, K. and Srinivasa Raghavan, R. (2008), "Evaluation of strength at early ages of self-compacting concrete with high volume fly ash", Construct. Build. Mater., 22(7), 1394-1401. https://doi.org/10.1016/j.conbuildmat.2007.04.005
- Springenschmid, R. (1998), Prevention of thermal cracking in concrete at early ages, E&FN Spon, London.
- Wirquin, E., Broda, M. and Duthoit, B. (2002), "Determination of the apparent activation energy of one concrete by calorimetric and mechanical means influence of a superplasticizer", Cement Concrete Res., 32(8), 1207-1213. https://doi.org/10.1016/S0008-8846(02)00770-6
- Hammer, T.A., Kanstad, T., Bjontegaard, O. and Sellevold, E.J. (2003), "Mechanical properties of young Concrete: part I:Experimental results related to test methods and temperature effects", Mater. Struct. , 36, 218-225.
- Zhenhuan, S. and Yong, L. (2011), "Numerical simulation of concrete confined by transverse reinforcement", Comput. Concrete, 8(1), 23-41. https://doi.org/10.12989/cac.2011.8.1.023
피인용 문헌
- A treatise on irregular shaped concrete test specimens vol.16, pp.1, 2015, https://doi.org/10.12989/cac.2015.16.1.179
- Restoring-force model of modified RAC columns with silica fume and hybrid fiber vol.24, pp.11, 2017, https://doi.org/10.1007/s11771-017-3680-9
- Influence of High-Temperature Curing on the Properties of the Concrete Containing Ground Iron and Steel Slag vol.507, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.507.337
- Numerical identification of the thermal properties of early age concrete using inverse heat transfer problem pp.1432-1181, 2019, https://doi.org/10.1007/s00231-018-2504-2
- Influence of Early Age on the Wave Velocity and Dynamic Compressive Strength of Concrete Based on Split Hopkinson Pressure Bar Tests vol.2018, pp.1875-9203, 2018, https://doi.org/10.1155/2018/8206287
- An improvement on the concrete exothermic models considering self-temperature duration vol.19, pp.6, 2013, https://doi.org/10.12989/cac.2017.19.6.659
- Micro-scale FEM Calculation of Concrete Temperature during Production and Casting vol.35, pp.1, 2013, https://doi.org/10.1007/s11595-020-2234-4
- Influence of curing age on the mechanical properties of fly ash concrete exposed to elevated temperature vol.22, pp.suppl1, 2021, https://doi.org/10.1002/suco.202000155