참고문헌
- Baykasoglu, A., Gullu, H., Canakci, H. and Ozbakir, L. (2008),"Prediction of compressive and tensile strength of limestone via genetic programming", Expert Syst. Appl., 35(1-2), 111-123. https://doi.org/10.1016/j.eswa.2007.06.006
- Baykasoglu, A., Oztas, A. and Ozbay, E. (2009),"Prediction and multi-objective optimization of high-strength concrete parameters via soft computing approaches", Expert Syst. Appl., 36(3), 6145-6155. https://doi.org/10.1016/j.eswa.2008.07.017
- Bhattacharya, M., Abraham, A. and Nath, B. (2001),"A linear genetic programming approach for modeling electricity demand prediction in Victoria", Proceeding of the hybrid information systems, first international workshop on hybrid intelligent systems, Adelaide, Australia, 379-393.
- Bilgehan, M. and Turgut, P. (2010),"The use of neural networks in concrete compressive strength estimation", Comput. Concrrete, 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- Ferreira, C. (2001)."Gene expression programming: A new adaptive algorithm for solving problems", Complex Syst., 13(2), 87-129.
- Gen, M. and Cheng, R. (1997), Genetic algorithms and engineering design, New York, Wiley.
- Holland, J.H. (1975), Adaptation in neural and artificial systems, The University of Michigan Press, Ann Arbor.
- Hoshikuma, K., Kawashima, K., Nagaya, K. and Taylor, A.W. (1997),"Stress-strain model for confined reinforced concrete in bridge piers", J. Struct. Eng., 123(5), 624-633. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:5(624)
- Hossain, K.M.A., Lachemi, M. and Easa, S.M. (2006),"Artificial neural network model for the strength prediction of fully restrained RC slabs subjected to membrane action", Comput. Concrete, 3(6), 439-454. https://doi.org/10.12989/cac.2006.3.6.439
- Koza, J.R. (1992), Genetic programming: On the programming of computers by means of natural selection, MIT Press.
- Mander, J.B., Priestley, M.J.N. and Park, R. (1988),"Observed stress-strain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827)
- Michalewicz, Z. (1996), Genetic algorithms + data structures = evolution programs, 3rd edn, Springer, New York.
- Oltean, M. and Dumitrescu, D. (2002),"Multi expression programming, technical report, UBB-01-2002", Babes-Bolyai University, Cluj-Napoca, Romania.
- Oreta, A.W.C. and Kawashima, K. (2003),"Neural network modeling of confined compressive strength and strain of circular concrete columns", J. Struct. Eng., 129(4), 554-561. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(554)
- Ozbay, E., Oztas, A. and Baykasoglu, A. (2010),"Cost optimization of high strength concretes by soft computing techniques", Comput. Concrete, 7(3), 221-237. https://doi.org/10.12989/cac.2010.7.3.221
- Parichatprecha, R. and Nimityongskul, P. (2009),"An integrated approach for optimum design of HPC mix proportion using genetic algorithm and artificial neural networks", Comput. Concrete, 6(3), 253-268. https://doi.org/10.12989/cac.2009.6.3.253
- Penelis, G.G. and Kappos, A.J. (1997), Earthquake-resistant concrete structures, E&FN Spon, London, Sec. 7(4), 177-196.
- Peng, C.H., Yeh, I.C. and Lien, L.C. (2009),"Modeling strength of high-performance concrete using genetic operation trees with pruning techniques", Comput. Concrete, 6(3), 203-223. https://doi.org/10.12989/cac.2009.6.3.203
- Saatcioglu, M. and Razvi, S.R. (1992),"Strength and ductility of confined concrete", J. Struct. Eng., 118(6), 1590-1607. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:6(1590)
- Sakai, J. (2001), Effect of lateral confinement of concrete and varying axial load on seismic response of bridges, Doctor of Engineering Dissertation, Dept. of Civil Engineering, Tokyo Institute of Technology, Tokyo.
- Sakai, J., Kawashima, K., Une, H. and Yoneda, K. (2000),"Effect of tie spacing on stress-strain relation of confined concrete", J. Struct. Eng., 46(3), 757-766.
- Scardi, M. and Harding, L.W. (1999),"Developing an empirical model of phytoplankton primary production: a neural network case study", Ecol. Model., 120(2), 213-223. https://doi.org/10.1016/S0304-3800(99)00103-9
- Tsai, H.C. (2009),"Hybrid high order neural networks", Appl. Soft. Comput., 9(3), 874-881. https://doi.org/10.1016/j.asoc.2008.11.007
- Tsai, H.C. (2010),"Predicting strengths of concrete-type specimens using hybrid multilayer perceptrons with center-unified particle swarm optimization", Expert Syst. Appl., 37(2), 1104-1112. https://doi.org/10.1016/j.eswa.2009.06.093
- Tsai, H.C. (2011),"Using weighted genetic programming to program squat wall strengths and tune associated formulas", Eng. Appl. Artif. Intell., 24(3), 526-533. https://doi.org/10.1016/j.engappai.2010.08.010
- Tsai, H.C. and Lin, Y.H. (2011),"Predicting high-strength concrete parameters using weighted genetic programming", Eng. Comput., 27(4), 347-355. https://doi.org/10.1007/s00366-011-0208-z
- Yeh, I.C. and Lien, L.C. (2009),"Knowledge discovery of concrete material using genetic operation trees", Expert Syst. Appl., 36(3), 5807-5812. https://doi.org/10.1016/j.eswa.2008.07.004
피인용 문헌
- Shear strength of RC beams. Precision, accuracy, safety and simplicity using genetic programming vol.14, pp.4, 2014, https://doi.org/10.12989/cac.2014.14.4.479
- Numerical formulation of confined compressive strength and strain of circular reinforced concrete columns using gene expression programming approach 2017, https://doi.org/10.1002/suco.201700131
- New empirical formulations for indirect estimation of peak-confined compressive strength and strain of circular RC columns using LGP method 2018, https://doi.org/10.1007/s00366-018-0577-7
- A new formulation for strength characteristics of steel slag aggregate concrete using an artificial intelligence-based approach vol.27, pp.4, 2013, https://doi.org/10.12989/cac.2021.27.4.333