DOI QR코드

DOI QR Code

공진기의 임피던스 변화에 근거한 비접촉 생체 신호 센서

Non-Contact Vital Signal Sensor Based on Impedance Variation of Resonator

  • 김기윤 ((주)LG전자) ;
  • 김상규 ((주)LG전자) ;
  • 홍윤석 (삼성탈레스(주)) ;
  • 육종관 (연세대학교 전기전자공학과 Advanced Computational Electromagnetics Lab.)
  • 투고 : 2013.04.30
  • 심사 : 2013.08.30
  • 발행 : 2013.09.30

초록

본 논문에서는 공진기의 임피던스 변화에 근거한 생체 신호 센서를 제안한다. 제안된 생체 신호 센서는 호흡과 심장 박동 같은 생체 신호를 감지할 수 있고, 시스템은 공진기, 발진기, SAW 필터, 그리고 파워 감지기로 구성되어있다. 인체와 같은 유전체의 주기적인 움직임은 근거리 장 영역 안에서 공진기의 임피던스 변화를 야기하며, 따라서 공진기의 공진 주파수의 변화는 발진기의 발진 주파수 변화에 영향을 끼친다. 여기서 SAW 필터 저지대역의 가파른 주파수 응답특성은 작은 양의 주파수 편차를 큰 변화로 바꿀 수 있다. 기존의 센서의 감지 거리를 확장시키는 것을 목적으로 ISM 대역 870 MHz 대역에서 동작 시켰으며, 최대 거리 120 mm에서 호흡과 심장 박동신호의 검출을 확인하였다.

In this paper, a vital signal sensor based on impedance variation of resonator is presented. Proposed vital signal sensor can detect the vital signal, such as respiration and heart-beat signal. System is composed of resonator, oscillator, surface acoustic wave (SAW) filter, and power detector. The cyclical movement of a dielectric such as a human body, causes the impedance variation of resonator within the near-field range. So oscillator's oscillation frequency variation is effected on resonator's resonant frequency. SAW filter's skirt characteristic of frequency response can be transformed a small amount of frequency deviation to a large variation. Aim to enhance the existing sensor detection range, proposed sensor operates in 870 MHz ISM band, and detect respiration and heart-beat signal at distance of 120 mm.

키워드

참고문헌

  1. S. M, Lee, J. W. Nah, S. M. Chun, K. C. Lee, J. H. Choi, M. K. Kang, and J. T. Park, "Design and implementation for M2M-based U-healthcare application service," in Proc. KICS Autumn Conf. 2011, pp. 353-354, Seoul, Korea, Nov. 2011.
  2. J. C. Lin, "Microwave sensing of physiological movement and volume change: a review," Bioelectromagnetics, vol. 13, no. 6, pp. 557-565, 1992. https://doi.org/10.1002/bem.2250130610
  3. V. M. Lubecke, O. Boric-Lubecke, G. Awater, P. W. Ong, P. L. Gammel, R. H. Yan, and J. C. Lin, "Remote sensing of vital signs with telecommunications signals," in World Congress Medical Physics Biomed. Eng. (WC2000), Chicago, U.S.A., July 2000.
  4. Y. F. Chen, D. Misra, H. Wang, H.-R. Chuang, and E. Postow, "An X-band microwave life-detection system," IEEE Trans. Biomed. Eng., vol. BME-33, no. 7, pp. 697-701, July 1986. https://doi.org/10.1109/TBME.1986.325760
  5. D. Zito, D. Pepe, M. Mincica, F. Zito, D. De Rossi, A. Lanata, E. P. Scilingo, and A. Tognetti, "Wearable system-on-a-chip UWB radar for contact-less cardiopulmonary monitoring: present status," in Proc. 30th Annu. Conf. IEEE Eng. Med. Biol. Soc., pp. 5274-5277, Vancouver, Canada, Aug. 2008.
  6. M. Mincica, D. Pepe, A. Tognetti, A. Lanata, D. De Rossi, and D. Zito, "Enabling technology for heart health wireless assistance," in Proc. 12th IEEE Int. Conf. e-Health Networking Appl. Services (Healthcom), pp. 36-42, Lyon, France, 2010.
  7. M. Mincica, D. Pepe, F. Zito, and D. Zito, "Advances in CMOS SoC radar sensor for contactless cardiac monitoring," in Proc. Conf. Ph.D. Research Microelectron. Electron. (PRIME), pp. 1-4, Berlin, Germany, July 2010.
  8. S.-G. Kim, G.-H. Yun, and J.-G. Yook, "Compact vital signal sensor using oscillation frequency deviation," IEEE Trans. Microw. Theory Tech., vol. 60, no. 2, pp. 393-400, Feb. 2012. https://doi.org/10.1109/TMTT.2011.2175403
  9. R. W. Rhea, Oscillator Design and computer Simulation, 2nd Ed., Novel Publishing Corporation, 1995.
  10. A. W. Guy, "Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models," IEEE Trans. Microw. Theory Tech., vol. 19, no. 2, pp. 205-214, Feb. 1971. https://doi.org/10.1109/TMTT.1968.1127484
  11. R. W. P. King, "Electromagnetic field generated in model of human head by simplified telephone transceiver," Radio Sci., vol. 30, no. 1, pp. 267-281, Jan. 1995. https://doi.org/10.1029/94RS00510
  12. H.-R. Chuang, "Numerical computation of fat layer effects on microwave near-field radiation to the abdomen of a full-scale human body model," IEEE Trans. Microw. Theory Tech., vol. 45, no. 1, pp. 118-125, Jan. 1997. https://doi.org/10.1109/22.552040
  13. H. P. Schwan and K. Li, "Hazards due to total body irradiation by radar," Proc. IRE, vol. 44, no. 11, pp. 2058-2062, Nov. 1956.
  14. P. W. Barber, O. P. Gandhi, M. J. Hagmann, and I. Chatterjee, "Electromagnetic absorption in a multilayered model of man," IEEE Trans. Biomed. Eng., vol. BME-26, no. 7, pp. 400-405, July 1979. https://doi.org/10.1109/TBME.1979.326418
  15. I. Chatterjee, O. P. Gandhi, M. J. Hagmann, and A. Riazi, "Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions," Bioelectromagnetics, vol. 1, no. 4, pp. 363-377, 1980. https://doi.org/10.1002/bem.2250010403
  16. K. Meier, R. Kstle, V. Hombach, R. Tay, and N. Kuster, "The dependence of EM energy absorption upon human head modeling at 1800 MHz," IEEE Trans. Microw. Theory Tech., vol. 45, no. 11, pp. 2058-2062, Nov. 1997. https://doi.org/10.1109/22.644237
  17. K. H. Chan and J. C. Lin. "Microprocessor-based cardiopulmonary rate monitor," Medical Biological Eng. Computation, vol. 25, no. 1, pp. 41-44, Jan. 1987. https://doi.org/10.1007/BF02442818