References
- NIST, Digital Signature Standard, Federal Information Processing Standard 186-3, 2000, http://csrc.nist.gov/publications/fips/.
- D. Shanks, "Five number-theoretic algorithms," in Proc. Second Manitoba Conf. Numerical Math., pp. 51-70, Winnipeg, Canada, Oct. 1972.
- A. Tonelli, "Bemerkung uber die Auflosung Quadratisher Congruenzen," Gottinger Nachrichten, pp. 344-346, 1891.
- M. Cipolla, "Un metodo per la risoluzione della congruenza di secondo grado," Rendiconto dell'Accademia Scienze Fisiche e Matematiche, vol. 9, no. 3, pp. 154-163, 1903.
- D. H. Lehmer, "Computer technology applied to the theory of numbers," Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), pp. 117-151, 1969.
- S. Lindhurst, "An analysis of Shanks's algorithm for computing square roots in finite fields," CRM Proc. Lecture Notes, vol. 19, pp. 231-242, 1999.
- D. G. Han, D. Choi, and H. Kim, "Improved computation of square roots in specific finite fields," IEEE Trans. Comput., vol. 58, no. 2, pp. 188-196, Feb. 2009. https://doi.org/10.1109/TC.2008.201
-
D.-G. Han, D. H. Choi, H. Kim, and J. Lim, "Efficient computation of square roots in finite fields
$F_{{p}^{k}}$ ," J. Korea Inst. Inform. Security Cryptology (KIISC), vol. 18, no. 6A, pp. 3-15, Dec. 2008. - A. O. L. Atkin, "Probabilistic primality testing," summary by F. Morain, Inria Research Report 1779, pp. 159-163, 1992.
- S. Muller, "On the computation of square roots in finite fields," Designs, Codes and Cryptography, vol. 31, no. 3, pp. 301-312, Mar. 2004. https://doi.org/10.1023/B:DESI.0000015890.44831.e2
- F. Kong, Z. Cai, J. Yu, and D. Li, "Improved generalized Atkin algorithm for computing square roots in finite fields," Inform. Process. Lett., vol. 98, no. 1, pp. 1-5, Apr. 2006. https://doi.org/10.1016/j.ipl.2005.11.015