DOI QR코드

DOI QR Code

런-길이 제한 부호를 패리티로 사용한 연판정 LDPC 부호의 수직자기기록 채널 성능

Performance of Run-length Limited Coded Parity of Soft LDPC Code for Perpendicular Magnetic Recording Channel

  • 김진영 (숭실대학교 정보통신전자공학부 정보저장 및 통신 연구실) ;
  • 이재진 (숭실대학교 정보통신전자공학부 정보저장 및 통신 연구실)
  • 투고 : 2013.09.15
  • 심사 : 2013.09.26
  • 발행 : 2013.09.30

초록

본 논문에서는 수직자기기록 저장장치에서 사용되는 LDPC 부호의 패리티 부분을 (1, 7) 런-길이 제한 부호로 사용할 때, 연판정 값을 입력으로 한 경우의 성능을 조사한다. 사용자 데이터는 최대 천이 런(maximum transition run) 부호로 인코딩된다. 부호율의 손해를 최소화 하기 위하여 LDPC 부호의 패리티에만 (1, 7) 런-길이 제한 부호를 적용한다. 본 논문에서는 성능 향상을 위하여 사용자 데이터 부분에 대하여만 연판정 출력 비터비 알고리즘(soft output Viterbi algorithm, SOVA)을 사용한다. SOVA를 사용한 경우의 성능은 26dB 보다 작은 신호대잡음비에서 좋게 나타난 것에 반하여 26dB 보다 높은 신호대잡음비에서는 나쁘게 나타났다. 이것은 높은 지터 잡음과 LDPC 디코더에 두 가지 다른 형태의 입력에 기인한다.

We propose soft user data input on LDPC codes with parity encoded by the (1, 7) run length limited (RLL) code for perpendicular magnetic recording channel. The user data are encoded by maximum transition run (MTR) (3;11) code. In order to minimize the loss of code rate, the (1, 7) RLL code only encode the parity of LDPC. Also, to increase performance, we propose only user data part applied soft output Viterbi algorithm (SOVA). The performance using the SOVA showed good performance lower than 26 dB. In contrast, it showed worse performance high than 26 dB. This is because of incorrect soft information by high jitter noise and two different input types for LDPC decoder.

키워드

참고문헌

  1. N. Fujiwara, K. Shinagawa, K. Ashiho, K. Fujiwara, and N. Takahashi, "Development of 3-D read/write simulation system for higher areal recording density," IEEE Trans. Magn., vol. 40, no. 2, pp. 838-841, Mar. 2004. https://doi.org/10.1109/TMAG.2004.825024
  2. M. Igarashi, M. Hara, A. Nakamura, Y. Hosoe, and Y. Sugita, "High-density perpendicular recording media with large grain separation," IEEE Trans. Magn., vol. 41, no. 2, pp. 549-554, Feb. 2005. https://doi.org/10.1109/TMAG.2004.838048
  3. M. Hashimoto, N. Ito, H. Kashiwase, T. Ichihara, H. Nakagawa, and K. Nakamoto, "Analysis of relation between magnetic cluster size distribution and signal quality for high-density recording," IEEE Trans. Magn., vol. 46, no. 6, pp. 1576-1579, June 2010. https://doi.org/10.1109/TMAG.2010.2042575
  4. I. Demirkan and Y. X. Lee, "The combined constraints for perpendicular recording channels," IEEE Trans. Magn., vol. 42, no. 2, pp. 220-225, Feb. 2006. https://doi.org/10.1109/TMAG.2005.861746
  5. N. Mysore and J. Bajcsy, "Reduced complexity signal detection and turbo decoding for multitrack magnetic recording channels," IEEE Trans. Magn., vol. 41, no. 10, pp. 2974-2976, Oct. 2005. https://doi.org/10.1109/TMAG.2005.854461
  6. J. Lu and J. M. F. Moura, "Structured LDPC codes for high-density recording: large girth and low error floor," IEEE Trans. Magn., vol. 42, no. 2, pp. 208-213, Feb. 2006. https://doi.org/10.1109/TMAG.2005.861748
  7. T. Nishiya, K. Tsukano, T. Hirai, S. Mita, and T. Nara, "Rate 16/17 maximum transition run (3;11) code on an EEPRML channel with an error-correcting postprocessor," IEEE Trans. Magn., vol. 35, no. 5, pp. 4378-4386, Sep. 1999. https://doi.org/10.1109/20.799089
  8. E. Yamada, T. Iwaki, and T. Yamaguchi, "Turbo decoding with run length limited code for optical storage," Japanese J. Applied Physics, vol. 41, no. 3B, pp. 1753-1756, Mar. 2002. https://doi.org/10.1143/JJAP.41.1753
  9. T. Kanaoka and T. Morita, "Structured LDPC codes with reversed MTR/ECC for magnetic recording channels," IEEE Trans. Magn., vol. 42, no. 10, pp. 2561-2563, Oct. 2006. https://doi.org/10.1109/TMAG.2006.878619
  10. K. Cai, K. A. S. Immink, Y. X. Lee, Z. Qin, and T. C. Chong, "Distance enhancing constrained codes with parity-check constraints for data storage channels," IEEE J. Sel. Areas Commun., vol. 28, no. 2, pp. 208-217, Feb. 2010. https://doi.org/10.1109/JSAC.2010.100210
  11. X. Hu and B. V. K. V. Kumar, "Evaluation of low-density parity-check codes on perpendicular magnetic recording model," IEEE Trans. Magn., vol. 43, no. 2, pp. 727-732, Feb. 2007. https://doi.org/10.1109/TMAG.2006.888370
  12. S. Jeon and B. V. K. V. Kumar, "Performance and complexity of 32 k-bit binary LDPC codes for magnetic recording channels," IEEE Trans. Magn., vol. 46, no. 6, pp. 2244-2247, June 2010. https://doi.org/10.1109/TMAG.2010.2043067
  13. N. Xie, T. Zhang, and E. F. Haratsch, "Improving burst error tolerance of LDPC-centric coding systems in read channel," IEEE Trans. Magn., vol. 46, no. 3, pp. 933-941, Mar. 2010. https://doi.org/10.1109/TMAG.2009.2034012
  14. T. Morita, Y. Sato, and T. Sugawara, "ECC-less LDPC coding for magnetic recording channels," IEEE Trans. Magn., vol. 38, no. 5, pp. 2304-2306, Sep. 2002. https://doi.org/10.1109/TMAG.2002.801874
  15. W. Tan, "Design of inner LDPC codes for magnetic recording channels," IEEE Trans. Magn., vol. 44, no. 1, pp. 217-222, Jan. 2008. https://doi.org/10.1109/TMAG.2007.912833
  16. J. Kim, J. Lee, and J. Lee, "Performance of low-density parity check codes with parity encoded by (1, 7) run-length limited code for perpendicular magnetic recording," IEEE, Trans. Magn., vol. 48, no. 11, pp. 4610-4613, Nov. 2012. https://doi.org/10.1109/TMAG.2012.2197736
  17. J. Kim and J. Lee, "Performance of noise-predictive turbo equalization for PMR channel," J. KICS, vol. 33, no. 10, pp. 758-763, Oct. 2008.