DOI QR코드

DOI QR Code

Establishment and Characterization of Permanent Cell Lines from Oryzias dancena Embryos

  • Lee, Dongwook (Department of Fisheries Biology, Pukyong National University) ;
  • Kim, Min Sung (Department of Fisheries Biology, Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Fisheries Biology, Pukyong National University) ;
  • Kim, Dong Soo (Department of Fisheries Biology, Pukyong National University) ;
  • Gong, Seung Pyo (Department of Fisheries Biology, Pukyong National University)
  • Received : 2013.05.22
  • Accepted : 2013.07.30
  • Published : 2013.09.30

Abstract

The development of species-specific fish cell lines has become a valuable tool for biological research. In recent years, marine medaka Oryzias dancena has been recognized as a good experimental model fish but there are no reports of establishment of cell lines from this fish. In this study, two cell lines from O. dancena blastula embryos were established from 41 total trials (4.9%). The two cell lines displayed typical in vitro morphology and have been cultured for >121 passages, which corresponds to 293 days. The doubling times of the cell lines were 29.84 and 28.59 h, respectively, and both possessed the potential to expand in a clonal manner, albeit with significant differences between the two cell lines. The absence of any of the four main medium supplements; i.e., fish serum, fetal bovine serum, basic fibroblast growth factor, and medaka embryo extract, significantly inhibited growth. The proportion of cells possessing normal chromosome number was 45% and 46.7% of the cell lines, respectively. Taken together, two cell lines that proliferate continuously were established from marine medaka and these cell lines may provide a basic tool for characterizing the unique features of this fish species.

Keywords

References

  1. Bejar J, Hong Y and Alvarez MC. 2002. An ES-like cell line from the marine fish Sparus aurata: characterization and chimaera production. Transgenic Res 11, 279-289. https://doi.org/10.1023/A:1015678416921
  2. Boilly B, Vercoutter-Edouart AS, Hondermarck H, Nurcombe V and Le Bourhis X. 2000. FGF signals for cell proliferation and migration through different pathways. Cytokine Growth Factor Rev 11, 295-302. http://dx.doi.org/10.1016/S1359-6101(00)00014-9.
  3. Bols NC, Barlian A, Chirino-Trejo M, Caldwell SJ, Goegan P and Lee LEJ. 1994. Development of a cell line from primary cultures of rainbow trout, Oncorhynchus mykiss (Walbaum), gills. J Fish Dis 17, 601-611. http://dx.doi.org/10.1111/j.1365-2761.1994.tb00258.x.
  4. Cho YS, Lee SY, Kim DS and Nam YK. 2010. Tolerance capacity to salinity changes in adult and larva of Oryzias dancena, a euryhaline medaka. Korean J Ichthyol 22, 9-16.
  5. Collodi P and Barnes DW. 1990. Mitogenic activity from trout embryos. Proc Natl Acad Sci U S A 87, 3498-3502. http://dx.doi.org/10.1073/pnas.87.9.3498.
  6. Dalle Nogare DE, Pauerstein PT and Lane ME. 2009. G2 acquisition by transcription-independent mechanism at the zebrafish midblastula transition. Dev Biol 326, 131-142. http://dx.doi.org/10.1016/j.ydbio.2008.11.002.
  7. Eagle H, Foley GE, Koprowski H, Lazarus H, Levine EM and Adams RA. 1970. Growth characteristics of virus-transformed cells: maximum population density, inhibition by normal cells, serum requirement, growth in soft agar, and xenogeneic transplantability. J Exp Med 131, 863-879. http://dx.doi.org/10.1084/jem.131.4.863.
  8. Franken NA, Rodermond HM, Stap J, Haveman J and van Bree C. 2006. Clonogenic assay of cells in vitro. Nat Protoc 1, 2315-2319. http://dx.doi.org/10.1038/nprot.2006.339.
  9. Freshney RI. 2010. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications. 6th ed. Wiley-Blackwell, Hoboken, NJ, US.
  10. Hong N, Li Z and Hong Y. 2011. Fish stem cell cultures. Int J Biol Sci 7, 392-402. http://dx.doi.org/10.7150/ijbs.7.392.
  11. Hong Y, Winkler C and Schartl M. 1996. Pluripotency and differentiation of embryonic stem cell lines from the medakafish (Oryzias latipes). Mech Dev 60, 33-44. http://dx.doi.org/10.1016/S0925-4773(96)00596-5.
  12. Hong Y, Winkler C and Schartl M. 1998. Efficiency of cell culture derivation from blastula embryos and of chimera formation in the medaka (Oryzias latipes) depends on donor genotype and passage number. Dev Genes Evol 208, 595-602. http://dx.doi.org/10.1007/s004270050220.
  13. Inoue K and Takei Y. 2003. Asian medaka fishes offer new models for studying mechanisms of seawater adaptation. Comp Biochem Physiol B Biochem Mol Biol 136, 635-645. http://dx.doi.org/10.1016/S1096-4959(03)00204-5.
  14. Kane DA and Kimmel CB. 1993. The zebrafish midblastula transition. Development 119, 447-456.
  15. Lakra WS, Swaminathan TR and Joy KP. 2011. Development, characterization, conservation and storage of fish cell lines: a review. Fish Physiol Biochem 37, 1-20. http://dx.doi.org/10.1007/s10695-010-9411-x.
  16. Li L, Orlando J and Chen JK. 1989. Growth factor requirements of normal and polyomavirus middle T gene transformed REF52 cells in serum-free medium: indications of a reduced vasopressin requirement and its relationship to the control of phosphatidylinositol metabolism. Exp Cell Res 183, 229-238. http://dx.doi.org/10.1016/0014-4827(89)90432-1.
  17. Li M, Fang X, Baker DJ, Guo L, Gao X, Wei Z, Han S, van Deursen JM and Zhang P. 2010. The ATM-p53 pathway suppresses aneuploidy-induced tumorigenesis. Proc Natl Acad Sci U S A 107, 14188-14193. http://dx.doi.org/10.1073/pnas.1005960107.
  18. Limoli CL, Rola R, Giedzinski E, Mantha S, Huang TT and Fike JR. 2004. Cell-density-dependent regulation of neural precursor cell function. Proc Natl Acad Sci U S A 101, 16052-16057. http://dx.doi.org/10.1073/pnas.0407065101.
  19. Newport J and Kirschner M. 1982. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30, 675-686. http://dx.doi.org/10.1016/0092-8674(82)90272-0.
  20. Nilsson EE and Cloud JG. 1992. Rainbow trout chimeras produced by injection of blastomeres into recipient blastulae. Proc Natl Acad Sci U S A 89, 9425-9428. http://dx.doi.org/10.1073/pnas.89.20.9425.
  21. Portela VM, Zamberlam G and Price CA. 2010. Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. Fertil Steril 93, 2050-2055. http://dx.doi.org/10.1016/j.fertnstert.2009.01.151.
  22. Rao K, Alper O, Opheim KE, Bonnet G, Wolfe K, Bryant E, O'Hara Larivee S, Porter P and McDougall JK. 2006. Cytogenetic characterization and H-ras associated transformation of immortalized human mammary epithelial cells. Cancer Cell Int 6, 15. http://dx.doi.org/10.1186/1475-2867-6-15.
  23. Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ, Stemple DL, Dhorne-Pollet S and Pollet N. 2012. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 50, 316-324. http://dx.doi.org/10.1002/dvg.20822.
  24. Smagghe G, Goodman CL and Stanley D. 2009. Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 45, 93-105. http://dx.doi.org/10.1007/s11626-009-9181-x.
  25. Smith CL. 2006. Mammalian cell culture. Curr Protoc Mol Biol 28.0.1-28.0.2. http://dx.doi.org/10.1002/0471142727.mb2800s73.
  26. Song HY, Nam YK, Bang IC and Kim DS. 2009. Embryogenesis and early ontogenesis of a marine medaka, Oryzias dancena. Korean J Ichthyol 21, 227-238.
  27. Stacey G. 2012. Current developments in cell culture technology. Adv Exp Med Biol 745, 1-13. http://dx.doi.org/10.1007/978-1-4614-3055-1_1.
  28. Stepanenko AA and Kavsan VM. 2012. Immortalization and malignant transformation of eukaryotic cells. Cytol Genet 46, 96-129. http://dx.doi.org/10.3103/S0095452712020041.
  29. Thibodeaux CA, Liu X, Disbrow GL, Zhang Y, Rone JD, Haddad BR and Schlegel R. 2009. Immortalization and transformation of human mammary epithelial cells by a tumor-derived Myc mutant. Breast Cancer Res Treat 116, 281-294. http://dx.doi.org/10.1007/s10549-008-0127-x.
  30. Thompson SL and Compton DA. 2010. Proliferation of aneuploid human cells is limited by a p53-dependent mechanism. J Cell Biol 188, 369-381. http://dx.doi.org/10.1083/jcb.200905057.
  31. Weiss MB, Vitolo MI, Mohseni M, Rosen DM, Denmeade SR, Park BH, Weber DJ and Bachman KE. 2010. Deletion of p53 in human mammary epithelial cells causes chromosomal instability and altered therapeutic response. Oncogene 29, 4715-4724. http://dx.doi.org/10.1038/onc.2010.220.
  32. Wobus AM and Boheler KR. 2005. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev 85, 635-678. http://dx.doi.org/10.1152/physrev.00054.2003.
  33. Wolf K and Quimby MC. 1962. Established eurythermic line of fish cells in vitro. Science 135, 1065-1066. http://dx.doi.org/10.1126/science.135.3508.1065.
  34. Yi M, Hong N and Hong Y. 2009. Generation of medaka fish haploid embryonic stem cells. Science 326, 430-433. http://dx.doi.org/10.1126/science.1175151.
  35. Yi M, Hong N and Hong Y. 2010. Derivation and characterization of haploid embryonic stem cell cultures in medaka fish. Nat Protoc 5, 1418-1430. http://dx.doi.org/10.1038/nprot.2010.104.

Cited by

  1. Effects of Temperatures and Basal Media on Primary Culture of the Blastomeres Derived from the Embryos at Blastula Stage in Marine Medaka Oryzias dancena vol.33, pp.4, 2018, https://doi.org/10.12750/JET.2018.33.4.343