References
- Asmussen, S. (1992), Phase-type representations in random walk and queueing problems, Annals of Probability, 20(2), 772-789. https://doi.org/10.1214/aop/1176989805
- Asmussen, S., Nerman, O., and Olsson, M. (1996), Fitting phase-type distributions via the EM algorithm, Scandinavian Journal of Statistics, 23(4), 419-441.
- Baum, D. and Breuer, L. (2006), Applying Foster's criteria to a GI/PH/1 queueing system, Cybernetics and Systems Analysis, 42(3), 433-439. https://doi.org/10.1007/s10559-006-0081-8
- Chakravarthy, S. (1992), A finite capacity GI/PH/1 queue with group services, Naval Research Logistics, 39(3), 345-357. https://doi.org/10.1002/1520-6750(199204)39:3<345::AID-NAV3220390305>3.0.CO;2-V
- Chaudhry, M. L. and Templeton, J. G. C. (1983), A First Course in Bulk Queues, John Wiley & Sons, New York, NY.
- Chaudhry, M. L., Harris, C. M., and Marchal, W. G. (1990), Robustness of root finding in single-server queueing models, INFORMS Journal on Computing, 2(3), 273-286. https://doi.org/10.1287/ijoc.2.3.273
-
Chaudhry, M. L., Samanta, S. K., and Pacheco, A. (2012), Analytically explicit results for the GI/C-MSP/1/
${\infty}$ queueing system using roots, Probability in the Engineering and Informational Sciences, 26(2), 221-244. https://doi.org/10.1017/S0269964811000349 - Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society: Series B, 39(1), 1-38.
- Dudin, A. N. and Klimenok, V. I. (2003), Optimal admission control in a queueing system with heterogeneous traffic, Operations Research Letters, 31(2), 108-118. https://doi.org/10.1016/S0167-6377(02)00218-3
- Dudin, A. N., Kim, C. S., and Semyonova, O. V. (2004), An optimal multithreshold control for the input flow of the GI/PH/1 queueing system with a BMAP flow of negative customers, Avtomatika i Telemekhanika, 9, 71-84.
- Grassmann, W. K. (1982), The GI/PH/1 queue: a method to find the transition matrix, INFOR, 20, 144-156.
- Guo, M. M., Tian, N. S., and Liu, A. Y. (2007), Queue system GI/PH/1 with repairable service station, Operations Research and Management Science, 16(5), 69-74.
- Kao, E. P. C. (1991), Using state reduction for computing steady state probabilities of queues of GI/PH/1 types, ORSA Journal on Computing, 3(3), 231-240. https://doi.org/10.1287/ijoc.3.3.231
- Kao, E. P. C. (1996), A comparison of alternative approaches for numerical solutions of GI/PH/1 queues, INFORMS Journal on Computing, 8(1), 74-85. https://doi.org/10.1287/ijoc.8.1.74
- Kim, J. S. (2006), Asymptotic analysis of the loss probability in the GI/PH/1/K queue, Journal of Applied Mathematics & Computing, 22(1), 273-283. https://doi.org/10.1007/BF02896477
- Latouche, G. (1993), Algorithms for infinite Markov chains with repeating columns. In Meyer, C. D. and Plemmons, R. D. (eds.), Linear Algebra, Markov Chains and Queueing Models, Springer, New York, NY, 231-265.
- Latouche, G. and Ramaswami, V. (1999), Introduction to Matrix Analytic Methods in Stochastic Modeling, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Neuts, M. F. (1981a), Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, Johns Hopkins University Press, Baltimore, MD.
- Neuts, M. F. (1981b), Stationary waiting-time distributions in the GI/PH/1 queue, Journal of Applications Probability, 18(4), 901-912. https://doi.org/10.2307/3213064
- Ramaswami, V. and Latouche, G. (1989), An experimental evaluation of the matrix-geometric method for the GI/PH/1 queue, Communications in Statistics: Stochastic Models, 5(4), 629-667. https://doi.org/10.1080/15326348908807128
- Ramaswami, V. and Lucantoni, D. M. (1988), Moments of the stationary waiting time in the GI/PH/1 queue, Journal of Applications Probability, 25(3), 636-641. https://doi.org/10.2307/3213992
- Sengupta, B. (1989), Markov processes whose steady state distribution is matrix-exponential with an application to the GI/PH/1 queue, Advances in Applied Probability, 21(1), 159-180. https://doi.org/10.2307/1427202
- Sengupta, B. (1990), The semi-Markovian queue: theory and applications, Communications in Statistics: Stochastic Models, 6(3), 383-413. https://doi.org/10.1080/15326349908807154
Cited by
- Analysis of $ D $-$ BMAP/G/1 $ queueing system under $ N $-policy and its cost optimization vol.17, pp.6, 2013, https://doi.org/10.3934/jimo.2020135