DOI QR코드

DOI QR Code

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi (Division of Biotechnology, Chonbuk National University) ;
  • Lee, Ha Kyung (Division of Biotechnology, Chonbuk National University) ;
  • Jeong, Ui-Seon (Division of Biotechnology, Chonbuk National University) ;
  • Baek, So Hyeon (Department of Rice and Winter Cereal Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Noh, Tae-Hwan (Department of Rice and Winter Cereal Crop, National Institute of Crop Science, Rural Development Administration) ;
  • Kwon, Soon Jong (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Yong Hoon (Division of Biotechnology, Chonbuk National University)
  • Received : 2013.06.23
  • Accepted : 2013.07.13
  • Published : 2013.09.30

Abstract

Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Keywords

References

  1. Adrian, M., Jeandet, P., Veneau, J., Weston, L. A. and Bessis, R. 1997. Biological activity of resveratrol, a stilbenic compound from grapevines, against Botrytis cinerea, the causal agent for gray mold. J. Chem. Ecol. 23: 1689-1702. https://doi.org/10.1023/B:JOEC.0000006444.79951.75
  2. Fang, Y., Xu, L.-H., Tian, W.-X., Huai, Y., Yu, S.-H., Lou, M.-M. and Xie, G.-L. 2009. Real-time fluorescence PCR method for detection of Burkholderia glumae from rice. Rice Science 16: 157-160. https://doi.org/10.1016/S1672-6308(08)60073-6
  3. Baek, S.-H., Shin, W.-C., Ryu, H.-S., Lee, D.-W., Moon, E., Seo, C.-S., Hwang, E., Lee, H.-S., Ahn, M.-H., Jeon, Y., Kang, H.-J., Lee, S.-W., Kim, S. Y., D'Souza, R., Kim, H.-J., Hong, S.-T. and Jeon, J.-S. 2013. Creation of resveratrol-enriched rice for the treatment of metabolic syndrome and related diseases. PLoS ONE 8: e57930. doi:10.1371/journal.pone.0057930.
  4. Giorcelli, A., Sparvoli, F., Mattivi, F., Tava, A., Balestrazzi, A., Vrhovsek, U., Calligari, P., Bollini, R. and Confalonieri, M. 2004. Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res. 13: 203-214. https://doi.org/10.1023/B:TRAG.0000034658.64990.7f
  5. Hain, R., Reif, H. J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P. H., Stocker, R. H. and Stenzel, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153-156. https://doi.org/10.1038/361153a0
  6. Hipskind, J. D. and Paiva, N. L. 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant Microbe Interact. 13: 551-562. https://doi.org/10.1094/MPMI.2000.13.5.551
  7. Jeandet, P., Douillet-Breuil, A. C., Bessis, R., Debord, S., Sbaghi, M. and Adrian, M. 2002. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agric. Food Chem. 50: 2731-2741. https://doi.org/10.1021/jf011429s
  8. Kauffman, H. E., Reddy, A. P. K., Hsieh, S. P. Y. and Merca, S. D. 1973. An improved technique for evaluating resistance of rice varieties to Xanthomonas oryzae. Plant Dis. Rep. 57: 537-541.
  9. Kobayashi, S., Ding, C. K., Nakamura, Y., Nakajima, I. and Matsumoto, R. 2000. Kiwifruit (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol glucoside). Plant Cell Rep. 19: 904-910. https://doi.org/10.1007/s002990000203
  10. Leckband, G. and Lorz, H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96: 1001-1012.
  11. Maddox, C, E., Laur, L. M. and Tian, L. 2010. Antibacterial activity of phenolic compounds against the phytopathogen Xylella fastidiosa. Curr. Microbiol. 60: 53-58. https://doi.org/10.1007/s00284-009-9501-0
  12. Naureen, Z., Price, A. H., Hafeez, F. Y. and Roberts, M. R. 2009. Identification of rice blast disease-suppressing bacterial strains from the rhizosphere of rice grown in Pakistan. Crop Prot. 28: 1052-1060. https://doi.org/10.1016/j.cropro.2009.08.007
  13. Park, D.-S., Sayler, R. J., Hong, Y.-G., Nam, M.-H. and Yang, Y. 2008. A method for inoculation and evaluation of rice sheath blight disease. Plant Dis. 92: 25-29. https://doi.org/10.1094/PDIS-92-1-0025
  14. Paulo, L., Ferreira, S., Gallardo, E., Queiroz, J. A. and Domingues, F. 2010. Antimicrobial activity and effects of resveratrol on human pathogenic bacteria. World J. Microbiol. Biotechnol. 26: 1533-1538. https://doi.org/10.1007/s11274-010-0325-7
  15. Pezet, R., Perret, C., Jean-Denis, J. B., Tabacchi, R., Gindro, K. and Viret, O. 2003. $\delta$-Viniferin, a resveratrol dehydrodimer: one of the major stilbenes synthesized by stressed grapevine leaves. J. Agric. Food Chem. 51: 5488-5492. https://doi.org/10.1021/jf030227o
  16. Pezet, R., Gindro, K., Viret, O. and Richter, H. 2004a. Effects of resveratrol, viniferins and pterostilbene on Plasmopara viticola zoospore mobility and disease development. Vitis 43: 1145-1148.
  17. Pezet, R., Gindro, K., Viret, O. and Spring, J.-L. 2004b. Glycosylation and oxidative dimerization of resveratrol are respectively associated to sensitivity and resistance of grapevine cultivars to downy mildew. Physiol. Mol. Plant Pathol. 65: 2297-2303.
  18. Schulze, K., Schreiber, L. and Szankowski, I. 2005. Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J. Agric. Food Chem. 53: 356-362. https://doi.org/10.1021/jf048375h
  19. Stark-Lorenzen, P., Nelke, B., HanBler, G., Muhlbach, H. P. and Thomzik, J. E. 1997. Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.). Plant Cell Rep. 16: 668-673. https://doi.org/10.1007/s002990050299
  20. Szankowski, I., Briviba, K., Fleschhut, J., Schonherr, J., Jacobsen, H. J. and Kiesecker, H. 2003. Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis Vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep. 22: 141-149. https://doi.org/10.1007/s00299-003-0668-8
  21. Tegos, G., Stermitz, F. R., Lomovskaya, O. and Lewis K. 2002. Multidrug pump inhibitors uncover remarkable activity of plant antimicrobials. Antimicrob. Agents Ch. 46: 3133-3141. https://doi.org/10.1128/AAC.46.10.3133-3141.2002
  22. Thomzik, J. E., Stenzel, K., Stocker, R., Schreier, P. H., Hain, R. and Stahl, D. J. 1997. Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 51: 265-278. https://doi.org/10.1006/pmpp.1997.0123

Cited by

  1. Antimicrobial efficacy of extracts and constituents fractionated from Rheum tanguticum Maxim. ex Balf. rhizomes against phytopathogenic fungi and bacteria vol.108, 2017, https://doi.org/10.1016/j.indcrop.2017.06.067