DOI QR코드

DOI QR Code

Population Genetic Structure of the Bumblebee, Bombus ignitus (Hymenoptera: Apidae), Based on Mitochondrial COI Gene and Nuclear Ribosomal ITS2 Sequences

  • Oh, Hyung Keun (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Yoon, Hyung Joo (Department of Agricultural Biology, National Academy of Agricultural Science) ;
  • Lee, Joo Young (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Park, Jeong Sun (College of Agriculture & Life Sciences, Chonnam National University) ;
  • Kim, Iksoo (College of Agriculture & Life Sciences, Chonnam National University)
  • Received : 2013.07.16
  • Accepted : 2013.09.09
  • Published : 2013.09.30

Abstract

The bumblebee, Bombus ignitus (Hymenoptera: Apidae), is a valuable natural resource that is widely utilized for greenhouse pollination in South Korea. Understanding the magnitude of genetic diversity and geographic relationships is of fundamental importance for long term preservation and utilization. As a first step, we sequenced a partial COI gene of mitochondrial DNA (mtDNA) corresponding to the "DNA barcode" region and the complete internal transcribed spacer 2 (ITS2) of nuclear ribosomal DNA from 88 individuals collected in nine South Korean localities. The complete ITS2 sequences were longest among known insects, ranging in size from 2,034 bp ~ 2,052 bp, harboring two duplicated 112-bp long repeats. The 658-bp long mtDNA sequences provided only six haplotypes with a maximum sequence divergence of 0.61% (4 bp), whereas the ITS sequences provided 84 sequence types with a maximum sequence divergence of 1.02% (21 sites). The combination of the current COI data with those of published data suggest that the B. ignitus in South Korea and China are genetically a large group, but those in Japan can be roughly separated into another group. Overall, a very high per generation migration ratio, a very low level of genetic fixation, and no discernable hierarchical population were found to exist among the South Korean populations of B. ignitus, which suggests panmixia. This finding is consistent with our understanding of the dispersal capability of the species.

Keywords

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Contr 19, 716-723. https://doi.org/10.1109/TAC.1974.1100705
  2. Alam MT, Bora H, Das MK, Sharma YD (2008) The type and mysorensis forms of the Anopheles stephensi (Diptera: Culicidae) in India exhibit identical ribosomal DNA ITS2 and domain-3 sequences. Parasitol Res 103, 75-80. https://doi.org/10.1007/s00436-008-0930-7
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 6, 37-48.
  4. Beebe NW, Ellis JT, Cooper RD, Saul A (1999) DNA sequence analysis of the ribosomal DNA ITS2 region for the Anopheles punctulatus group of mosquitoes. Insect Mol Biol 8, 381-390. https://doi.org/10.1046/j.1365-2583.1999.83127.x
  5. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr Opin Genet Dev 8, 669-674.
  6. De La Rua P, De May-Itza JW, Serrano J, Quezada-Euan JJG (2007) Sequence and RFLP analysis of the ITS2 ribosomal DNA in two Neotropical social bees, Melipona beecheii and Melipona yucatanica (Apidae, Meliponini). Insectes Sociaux 54, 418-423. https://doi.org/10.1007/s00040-007-0962-5
  7. Dohzono I, Kunitake YK, Yokoyama J, Goka K (2008) Alien bumblebee affects native plant reproduction through interactions with native bumblebee. Ecology 89, 3082-3092. https://doi.org/10.1890/07-1491.1
  8. Erasmus JC, Van Noort S, Jousselin E, Greeff JM (2007) Molecular phylogeny of fig wasp pollinators (Agaonidae, Hymenoptera) of Ficus section Galoglychia. Zool Scripta 36, 61-78. https://doi.org/10.1111/j.1463-6409.2007.00259.x
  9. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10, 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  10. Felsenstein J (1985) Confidence limits on phylogenics: an approach using the bootstrap. Evolution 29, 783-791.
  11. Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20, 406-416. https://doi.org/10.2307/2412116
  12. Gomez-Zurita J, Juan C, Petitpierre E (2000) Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae). Insect Mol Biol 9, 591-604. https://doi.org/10.1046/j.1365-2583.2000.00223.x
  13. Hackett BJ, Gimnig J, Guelbeogo W, Constantini C, Koekemoer LL (2000) Ribosomal DNA internal transcribed spacer (ITS2) sequences differentiate Anopheles funestus and Anopheles and A. rivulorum , and uncover a cryptic taxon. Insect Mol Biol 9, 369-374. https://doi.org/10.1046/j.1365-2583.2000.00198.x
  14. Hajibabaei M, Singer GA, Hebert PD, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23, 167-172. https://doi.org/10.1016/j.tig.2007.02.001
  15. Hartl DL, Clark AG (1989) Principles of population genetics. Sinauer Sunderland, Mass.
  16. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 7, 313-321.
  17. Holsinger KE, Mason-Gamer RJ (1996) Hierarchical analysis of nucleotide diversity in geographically structured populations. Genetics 142, 629-639.
  18. Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17, 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  19. Hung YT, Chen CA, Wu WJ, Shih CJ (2004) Phylogenetic utility of the ribosomal internal transcribed spacer 2 in Strumigenys spp. (Hymenoptera: Formicidae). Mol Phylogenet Evol 32, 407-415. https://doi.org/10.1016/j.ympev.2004.03.010
  20. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23, 254-267.
  21. Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebee by the recently introduced Bombus terrestris (L.) (Hymenoptera, Apidae). J Insect Conserv 12, 135-146. https://doi.org/10.1007/s10841-007-9071-z
  22. Iwasaki M (1995) Introduction of commercial bumblebees into Japan. Honeybee Sci 16, 17-21.
  23. Ji Y, Zhang D, He L (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3, 581-585. https://doi.org/10.1046/j.1471-8286.2003.00519.x
  24. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30, 3059-3066. https://doi.org/10.1093/nar/gkf436
  25. Kawamura Y (2006) Recent progress in paleontological studies on the Quaternary mammals of Japan. Mammal Sci 47, 107-114.
  26. Kawecki TJ, Ebert P (2004) Conceptual issues in local adaptation. Ecol Lett 7, 1225-1241. https://doi.org/10.1111/j.1461-0248.2004.00684.x
  27. Keller A, Schleicher T, Schultz J, Muller T, Dandekar T, Wolf M (2009) 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 50-57. https://doi.org/10.1016/j.gene.2008.10.012
  28. Kim HY, Lee KY, Lee SB, Kim SR, Hong MY, Kim DY, Kim I (2008) Mitochondrial DNA sequence variation of the Mason bee, Osmia cornifrons (Hymenoptera: Apidae). Int J Indust Entomol 16, 75-86.
  29. Kim MJ, Yoon HJ, Im HH, Jeong HU, Kim MI, Kim SR, Kim I (2009) Mitochondrial DNA sequence variation of the bumblebee, Bumbus ardens (Hymenoptera: Apidae). J Asia-Pacific Entomol 12, 133-139. https://doi.org/10.1016/j.aspen.2009.02.003
  30. Kimura M (1980) A sample method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16, 111-120. https://doi.org/10.1007/BF01731581
  31. Lanave C, Preparata G, Saccone C, Serio G (1984) A new method for calculating evolutionary substitution rates. J Mol Evol 20, 86-93. https://doi.org/10.1007/BF02101990
  32. Lee ML, Yoon HJ, Jin BR (2006) Morphological and DNA variabilities of Bombus ignitus Smith (Apodae : Hymenoptera). Kor J Apicul 21, 139-144.
  33. Marcilla A, Bargues MD, Ramsey JM, Magallon-Gastelum E, Salazar- Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ, Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol Phylogenet Evol 18, 136-142. https://doi.org/10.1006/mpev.2000.0864
  34. Marinucci M, Romi R, Mancini P, Di Luca M, Severini C (1999) Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect Mol Biol 8, 469-480. https://doi.org/10.1046/j.1365-2583.1999.00140.x
  35. Mikkola K (1978) Spring migrations of wasps and bumble bees on southern coast of Finland (Hymenoptera Vespidae and Apidae). Ann Entomol Fennici 44, 10-26.
  36. Mitsuhata M (2000) Pollination of crops with bumblebee colonies in Japan. Honeybee Sci 21, 17-25.
  37. Muccio T, Marinucci M, Frusteri L, Maroli M, Pesson B, Gramiccia M (2000) Phylogenetic analysis of Phlebotomus species belonging to the subgenus Larrousius (Diptera: Psychodidae) by ITS2 rDNA sequences. Insect Biochem Mol Biol 30, 387-393. https://doi.org/10.1016/S0965-1748(00)00012-6
  38. Mukabayire O, Boccolini D, Lochouarn L, Fontenille D, Besansky NJ (1999) Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus . Mol Ecol 8, 289-297. https://doi.org/10.1046/j.1365-294X.1999.00567.x
  39. Oh HK, Yoon HJ, Kim MJ, Jeong HU, Kim SR, Hwang JS, Bae CH, Kim I (2009) ITS2 ribosomal DNA sequence variation of the bumblebee, Bombus ardens (Hymenoptera: Apidae). Genes Genomics 31, 293-303. https://doi.org/10.1007/BF03191202
  40. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  41. Samara R, Monje JC, Reineke A, Zebit CPW (2008) Genetic divergence of Trichogramma aurosum Sugonjaev and Sorokina (Hymenoptera: Trichogrammatidae) individuals based on ITS2 and AFLP analysis. J Appl Entomol 132, 230-238. https://doi.org/10.1111/j.1439-0418.2007.01245.x
  42. Shao ZY, Mao HX, Fu WJ, Ono M, Wang DS, Bonizzoni M, Zhang YP (2004) Genetic structure of Asian population of Bombus ignitus. J Hered 95, 46-52. https://doi.org/10.1093/jhered/esh008
  43. Stouthamer R, Gai Y, Koopmanschap AB, Platner GR, Pinto JD (2000) ITS-2 sequences do not differ for the closely related species Trichogramma minutum and T. platneri . Entomol Exp Appl 95, 105- 111. https://doi.org/10.1046/j.1570-7458.2000.00647.x
  44. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other method) software ver. 4.10, Sinauer Associates. Sunderland, Massachusetts
  45. Tang JM, Toe L, Black C, Unnasch TR (1996) Intraspecic heterogeniety of rDNA internal transcribed spacer in the Simu-lium damnosum (Diptera: Simulidae) complex. Mol Biol Evol 13, 244-252. https://doi.org/10.1093/oxfordjournals.molbev.a025561
  46. Thanwisai A, Kuvangkadilok C, Baimai V (2006) Molecular phylogeny of black flies (Diptera: Simuliidae) from Thailand, using ITS2 rDNA. Genetica 128, 177-204. https://doi.org/10.1007/s10709-005-5702-z
  47. Tokoro S, Yoneda M, Kunitake YK, Goka K (2010) Geographic variation in mitochondrial DNA of Bombus ignitus (Hymenoptera, Apidae). Appl Entomol Zool 45, 77-87. https://doi.org/10.1303/aez.2010.77
  48. Vobis M, Haese JD, Mehlhorn H, Mencke N, Blagburn BL, Bond R, Denholm I, Dryden MW, Payne P, Rust MK, Schroeder I, Vaughn MB, Bledsoe D (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitol Res 94, 219-226. https://doi.org/10.1007/s00436-004-1201-x
  49. Wagener B, Reineke A, Loehr B, Zebitz CPW (2006) Phylogenetic study of Diadegma species (Hymenoptera: Ichneumonidae) inferred from analysis of mitochondrial and nuclear DNA sequences. Biol Control 37, 131-140. https://doi.org/10.1016/j.biocontrol.2006.01.004
  50. Weekers PHH, De Jonckheere JF, Dumont HJ (2001) Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Mol Phylogenet Evol 20, 89-99. https://doi.org/10.1006/mpev.2001.0947
  51. Yoon HJ, Kim SY, Lee KY, Lee SB, Park IG, Kim I (2009) Interspecific hybridization of the bumblebees Bombus ignitus and B. terrestris . Int J Indust Entomol 18, 41-48.
  52. Yoon HJ, Kim SE, Kim YS (2002) Temperature and humidity favorable for colony development of the indoor-reared bumblebee, Bombus ignitus. Appl Entomol 37, 419-423.

Cited by

  1. Genetic structure of Korean populations of bumblebeesBombus ignitus(Hymenoptera: Apidae) as revealed by microsatellite markers vol.44, pp.6, 2014, https://doi.org/10.1111/1748-5967.12077
  2. Genetic variations of DNA barcoding region of bumble bees (Hymenoptera: Apidae) from South Korea vol.30, pp.1, 2013, https://doi.org/10.1080/24701394.2018.1450396