DOI QR코드

DOI QR Code

Morphological Diversity of Mitochondria in Cultured Astrocyte, HeLa, COS7 Cells under High Voltage Electron Microscopy

  • Kim, Hyun-Wook (Department of Anatomy, College of Medicine, Korea University) ;
  • Park, Seung Nam (Department of Anatomy, College of Medicine, Korea University) ;
  • Moon, Younghye (School of Biological Sciences, College of Natural Sciences, Seoul National University) ;
  • Oh, Seung Hak (Department of Anatomy, College of Medicine, Korea University) ;
  • Rhyu, Im Joo (Department of Anatomy, College of Medicine, Korea University)
  • Received : 2013.09.24
  • Accepted : 2013.09.26
  • Published : 2013.09.30

Abstract

Mitochondrion is an important intracellular organelle controlling energy production essential for cell survival. In addition, it is closely related to cellular apoptosis and necrosis. Linear, branched, circular, and ball-shaped mitochondria have been reported. Recent research suggests that mitochondrial morphology may reflect functional status of the cell. In this study, we investigated the density and ratio of the each morphological categories of mitochondria in a few normal cultured cells; astrocyte, HeLa and COS7 cells, of which metabolic activities are different, with high voltage electron microscopy. The absolute number and relative number per unit area of mitochondria was largest in astrocyte. But, the proportion of different mitochondrial shape was similar among cells. These results shows the numerical profiles but not morphological profiles of mitochondria are related to the metabolic activity of each cell line.

Keywords

References

  1. Belanger M and Magistretti P J (2009) The role of astroglia in neuroprotection. Dialogues Clin. Neurosci. 11, 281-295.
  2. Cerveny K L, Tamura Y, Zhang Z, Jensen R E, and Sesaki H (2007) Regulation of mitochondrial fusion and division. Trends Cell Biol. 17, 563-569. https://doi.org/10.1016/j.tcb.2007.08.006
  3. Chen Y and Swanson R A (2003) Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23, 137-149. https://doi.org/10.1097/01.WCB.0000044631.80210.3C
  4. de Vellis J and Cole R (2012) Preparation of mixed glial cultures from postnatal rat brain. Methods Mol. Biol. 814, 49-59. https://doi.org/10.1007/978-1-61779-452-0_4
  5. Detmer S A and Chan D C (2007) Functions and dysfunctions of mitochondrial dynamics. Nat. Rev. Mol. Cell Biol. 8, 870-879. https://doi.org/10.1038/nrm2275
  6. Eroglu C and Barres B A (2010) Regulation of synaptic connectivity by glia. Nature 468, 223-231. https://doi.org/10.1038/nature09612
  7. Friederich M, Hansell P, and Palm F (2009) Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr. Diabetes Rev. 5, 120-144. https://doi.org/10.2174/157339909788166800
  8. Goldstein S, Moerman E J, and Porter K (1984) High-voltage electron microscopy of human diploid fibroblasts during ageing in vitro. Morphometric analysis of mitochondria. Exp. Cell Res. 154, 101-111. https://doi.org/10.1016/0014-4827(84)90671-2
  9. Juurlink B H, Hertz L, and Yager J Y (1992) Astrocyte maturation and susceptibility to ischaemia or substrate deprivation. Neuroreport 3, 1135-1137. https://doi.org/10.1097/00001756-199212000-00026
  10. Kahraman S, Bambrick L L, and Fiskum G (2011) Effects of FK506 and cyclosporin a on calcium ionophore-induced mitochondrial depolarization and cytosolic calcium in astrocytes and neurons. J. Neurosci. Res. 89, 1973-1978. https://doi.org/10.1002/jnr.22709
  11. Kim H W, Oh S H, Kim J W, Cho B, Park I S, Sun W, and Rhyu I J (2012) Efficient and accurate analysis of mitochondrial morphology in a whole cell with a high-voltage electron microscopy. J. Electron. Microsc. (Tokyo) 61, 127-131. https://doi.org/10.1093/jmicro/dfs001
  12. Noske A B, Costin A J, Morgan G P, and Marsh B J (2008) Expedited approaches to whole cell electron tomography and organelle markup in situ in high-pressure frozen pancreatic islets. J. Struct. Biol. 161, 298-313. https://doi.org/10.1016/j.jsb.2007.09.015
  13. Palade G E (1953) An electron microscope study of the mitochondrial structure. J. Histochem. Cytochem. 1, 188-211. https://doi.org/10.1177/1.4.188
  14. Robin E D and Wong R (1988) Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J. Cell Physiol. 136, 507-513. https://doi.org/10.1002/jcp.1041360316
  15. Scheffler I E (1999) Mitochondria (Wiley-Liss, New York).
  16. Soubannier V and McBride H M (2009) Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793, 154-170. https://doi.org/10.1016/j.bbamcr.2008.07.008
  17. Takaoka A, Hasegawa T, Yoshida K, and Mori H (2008) Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108, 230-238. https://doi.org/10.1016/j.ultramic.2007.06.008
  18. Tsai H H, Li H, Fuentealba L C, Molofsky A V, Taveira-Marques R, Zhuang H, Tenney A, Murnen A T, Fancy S P, Merkle F, Kessaris N, Alvarez-Buylla A, Richardson W D, and Rowitch D H (2012) Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337, 358-362. https://doi.org/10.1126/science.1222381
  19. Twig G, Elorza A, Molina A J, Mohamed H, Wikstrom J D, Walzer G, Stiles L, Haigh S E, Katz S, Las G, Alroy J, Wu M, Py B F, Yuan J, Deeney J T, Corkey B E, and Shirihai O S (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433-446. https://doi.org/10.1038/sj.emboj.7601963