DOI QR코드

DOI QR Code

Simplified planar model for damage estimation of interlocked caisson system

  • Huynh, Thanh-Canh (Department of Ocean Eng., Pukyong National University) ;
  • Lee, So-Young (Department of Ocean Eng., Pukyong National University) ;
  • Kim, Jeong-Tae (Department of Ocean Eng., Pukyong National University) ;
  • Park, Woo-Sun (Coastal Development and Ocean Energy Research Dept., Korea Institute of Ocean Science and Technology (KIOST)) ;
  • Han, Sang-Hun (Coastal Development and Ocean Energy Research Dept., Korea Institute of Ocean Science and Technology (KIOST))
  • 투고 : 2013.01.21
  • 심사 : 2012.07.14
  • 발행 : 2013.09.25

초록

In this paper, a simplified planar model is developed for damage estimation of interlocked caisson systems. Firstly, a conceptual dynamic model of the interlocked caisson system is designed on the basis of the characteristics of existing harbor caisson structures. A mass-spring-dashpot model allowing only the sway motion is formulated. To represent the condition of interlocking mechanisms, each caisson unit is connected to adjacent ones via springs and dashpots. Secondly, the accuracy of the planar model's vibration analysis is numerically evaluated on a 3-D FE model of the interlocked caisson system. Finally, the simplified planar model is employed for damage estimation in the interlocked caisson system. For localizing damaged caissons, a damage detection method based on modal strain energy is formulated for the caisson system.

키워드

과제정보

연구 과제 주관 기관 : National Research Foundation of Korea (NRF)

참고문헌

  1. Bowles, J.E. (1996), Foundation analysis and design ,5th Ed., McGraw-Hill.
  2. Chou, J.H., and Ghaboussi, J. (2001), "Genetic algorithm in structural damage detection", Comput. Structures, 79, 1335-1353. https://doi.org/10.1016/S0045-7949(01)00027-X
  3. Doebling. S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification method", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
  4. Franco, L. (1994), "Vertical breakwaters: the Italian experience", Coast. Eng., 22, 3-29. https://doi.org/10.1016/0378-3839(94)90046-9
  5. Gao, M., Dai, G.Y. and Yang, J.H. (1988), "Dynamic studies on caisson-type breakwaters", Proceedings of the 21st Conference on Coastal Engineering, Torremolinos, Spain.
  6. Glisic, B., Inaudi, D., Lau, J.M., Mok, Y.C. and Ng, C.T. (2005), "Long-term monitoring of high-rise buildings using long-gage fiber optic sensors", Proceedings of the 7th International Conference on Multi-Purpose High-Rise Towers and Tall Buildings, Dubai, UAM.
  7. Goda, Y. (1994), "Dynamic response of upright breakwater to impulsive force of breaking waves", Coast. Eng., 22, 135-158. https://doi.org/10.1016/0378-3839(94)90051-5
  8. Ho, D.D., Lee, P.Y., Nguyen, K.D., Hong, D.S., Lee, S.Y., Kim, J.T., Shin, S.W., Yun, C.B. and Shinozuka, M. (2012), "Solar-powered Multi-scale Sensor Node on Imote2 Platform for Hybrid SHM in Cable-stayed Bridge", Smart Struct. Syst., 9(2), 145-164. https://doi.org/10.12989/sss.2012.9.2.145
  9. Jang, S.A., Jo, H., Cho, S., Mechitov, K.A., Rice, J.A., Sim, S.H., Jung, H.J., Yun, C.B., Spencer, Jr., B.F., and Agha, G. (2010), "Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation", Smart Struct. Syst., 6(5-6), 439-459. https://doi.org/10.12989/sss.2010.6.5_6.439
  10. Kim, D.K., Ryu, H.R., Seo, H.R. and Chang, S.K. (2005), "Earthquake response characteristics of port structure according to exciting frequency components of earthquakes (in Korean)", J. Korean Soc. Coast.Ocean Eng., 17(1), 41-46.
  11. Kim, J.T. and Stubbs, N. (1995), "Damage localization accuracy as a function of model uncertainty in the I-40 bridge over the Rio Grande", Proceedings of the SPIE, San Diego, USA.
  12. Kim, J.T., and Stubbs, N. (2002), "Improved damage identification method based on modal information", J. Sound Vib., 252(2), 223-238. https://doi.org/10.1006/jsvi.2001.3749
  13. Kobayashi, M., Tersashi, M. and Takahashi, K. (1987), "Bearing capacity of rubble mound supporting a gravity structure", Report Port Harbor Res. Inst., 26(5), 234-241.
  14. Koo, K.Y., Lee, J.J., Yun, C.B. and Kim, J.T. (2009), "Damage detection in beam-like structures using deflections obtained by modal flexibility matrices", Adv. Sci. Technol., 56, 483-488.
  15. Lamberti, A. and Martinelli, L. (1998) "Prototype measurements of the dynamic response of caisson breakwaters" , Proceedings of the 26th ICCE, Copenhagen, Denmark.
  16. Lee, S.Y., Lee, S.R. and Kim, J.T. (2011), "Vibration-based structural health monitoring of harbor caisson Structure" , Proceedings of the SPIE, USA.
  17. Lee, S.Y., Nguyen, K.D., Huynh, T.C., Kim, J.T., Yi, J. H. and Han, S.H. (2012), "Vibration-based damage monitoring of harbor caisson structure with damaged foundation-structure interface", Smart Struct. Syst., 10(6), 517-547. https://doi.org/10.12989/sss.2012.10.6.517
  18. Look, B. (2007), Handbook of geotechnical investigation and design tables, Taylor & Francis.
  19. Maddrell, R. (2005), "Lessons re-learnt from the failure of marine structures", Proceedings of the International Conference on Coastlines, Structures and Breakwaters, ICE, 139-152.
  20. Marinski, J.G. and Oumeraci, H. (1992), "Dynamic response of vertical structures to breaking wave Forces - review of the CIS design experience", Proceedings of the 23rd Int. Conf. Coastal Eng., Venice, ASCE, New York.
  21. Martinelli, L. and Lamberti, A. (2011), "Dynamic response of caisson breakwaters: suggestions for the equivalent static analysis of a single caisson in the array", Coast. Eng., 53, 1-20. https://doi.org/10.1142/S0578563411002240
  22. Matlab R2012b, Inc. (2012), http://www.matlab.com
  23. Otte, D., Van de Ponseele, P. and Leuridan, J. (1990), "Operational shapes estimation as a function of dynamic loads", Proceedings of the 8th IMAC, Florida, USA.
  24. Oumeraci, H. (1994), "Review and analysis of vertical breakwater failures - lessons learned", Coast. Eng., 22, 3-29. https://doi.org/10.1016/0378-3839(94)90046-9
  25. Oumeraci, H. and Kortenhaus, A. (1994), "Analysis of the dynamic response of caisson breakwaters", Coast. Eng., 22, 159-183. https://doi.org/10.1016/0378-3839(94)90052-3
  26. Oumeraci, H., Kortenhaus, H., Allsop, W., de Groot, M., Crouch, R., Vrijling, H. and Voortman, H. (2001), Probabilistic design tools for vertical breakwaters, Swets & Zeitlinger B.V., Lisse.
  27. Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169 (1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
  28. Park, J.H., Kim, J.T., Hong, D.S., Ho, D.D. and Yi, J.H. (2009), "Sequential damage detection approaches for beams using time-modal features and artificial neural networks", J. Sound Vib., 323(1), 451-474. https://doi.org/10.1016/j.jsv.2008.12.023
  29. Park W.S., Lee, S.R., Lee, S.Y. and Kim, J.T. (2011), "Damage monitoring in foundation-structure interface of harbor caisson using vibration-based autoregressive model", J. Korean Soc. Coast. Ocean Eng., 23( 1), 18-25. https://doi.org/10.9765/KSCOE.2011.23.1.018
  30. Press, W.H., Flannery, B. P., Teukolsky, S.A. and Vetterling, W.T. (1988), Numerical recipes - the art of scientific computing, Cambridge University Press, Cambridge.
  31. Richart, F.E., Hall Jr., J.R. andWoods, R.D. (1970), Vibration of soils and foundations, Prentice Hall Inc..
  32. SAP2000, Inc. (2006), http://www.sap2000.org
  33. Sekiguchi, H. and Ohmaki, S. (1992), "Overturning of caisson by storm waves", Soild Found., 32(3), 144-155. https://doi.org/10.3208/sandf1972.32.3_144
  34. Sekiguchi, H. and Kobayashi, S. (1994), "Sliding of caisson on rubble mound by wave force", Proceedings of the 13rd Int. Conf. on Soil Mech. And Found. Eng.., Balkema, Rotterdam, The Netherlands.
  35. Smirnov, G.N. and Moroz, L.R. (1983), "Oscillations of gravity protective structures of a vertical wall type", IAHR, Proceedings of the 20th Congress, 7, 216-219.
  36. Sohn, H., Farrar, C.R., Hemez, F.M., Shunk, D.D., Stinemates, D.W. and Nadler, B.R. (2003), A review of structural health monitoring literature: 1996-2001, Los Alamos National Laboratory Report LA-13976-MS.
  37. Tanimoto, K. and Takahashi, S. (1994), "Design and construction of caisson breakwaters - the Japanese experience", Coas. Eng., 22, 3-29. https://doi.org/10.1016/0378-3839(94)90046-9
  38. Taro, A., Masaharu, S., Ken-ichiro, S., Takashi, T., Daisuke, T., Geyong-Seon, Y. and Kenya, T. (2012), Investigation of the failure mechanism of kamaishi breakwaters due to tsunami - initial report focusing on hydraulic characteristics, Technical Note of The Port and Airport Research Institute, No. 1251.
  39. Vink, H.A.Th. (1997), Wave impacts on vertical breakwaters, Master's thesis, Faculty of Civil Engineering, Delft University of Technology, The Netherlands.
  40. Westergaard, H.M. (1933), "Water pressures on dams during earthquakes", T. Am. Soc., 98(2), 418-432.
  41. Wilson, E.L. (2004), Static and dynamic analysis of structures, 4th Ed., Berkeley, CA: Computers and Structures, Inc.
  42. Wong, K.Y. (2004), "Instrumentation and health monitoring of cable-supported bridges", Struct. Health Monit., 11(2), 91-124. https://doi.org/10.1002/stc.33
  43. Wu, X, Ghaboussi, J. and Garret, J.H., Jr. (1992), "Use of neural networks in detection of structural damage", Comput. Struct., 42(4), 649-659. https://doi.org/10.1016/0045-7949(92)90132-J
  44. Yamamoto, M., Endo, T., Hasegawa, A. and Tsunakawa, K. (1981), "Random wave tests on a damaged breakwater in Himekawa Harbor, Japan", Coast. Eng., 5, 275-294. https://doi.org/10.1016/0378-3839(81)90019-3
  45. Yang, Z., Elgamal, A., Abdoun, T. and Lee, C.J. (2001), "A numerical study of lateral spreading behind a caissontype quay wall", Proceedings of the 4th Int. Conf. on Recent Adv. in Geot. Earthq. Eng. and Soil Dyn. and Symp., California, USA.
  46. Yi, J.H. and Yun, C. B (2004), "Comparative study on modal identification methods using output-only information", Struct. Eng. Mech., 17(3-4), 445-456. https://doi.org/10.12989/sem.2004.17.3_4.445
  47. Yoon, H.S., Lee, S.Y., Kim, J.T. and Yi, J.H. (2012), "Field implementation of wireless vibration sensing system for monitoring of harbor caisson breakwaters", Int. J. Distrib. Sensor Net., 2012, 1-9.
  48. Yun, C.B. and Bahng, E.Y. (2000), "Substructural identification using neural networks", Comput. Struct,, 77(1), 41-52. https://doi.org/10.1016/S0045-7949(99)00199-6

피인용 문헌

  1. Issues in structural health monitoring for fixed-type offshore structures under harsh tidal environments vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.335
  2. Application of numerical simulation of submersed rock-berm structure under anchor collision for structural health monitoring of submarine power cables vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.299
  3. Effects of foundation damage and water-level change on vibration modal parameters of gravity-type caisson structure vol.58, pp.2, 2015, https://doi.org/10.1007/s11431-014-5748-1
  4. Structural identification of cable-stayed bridge under back-to-back typhoons by wireless vibration monitoring vol.88, 2016, https://doi.org/10.1016/j.measurement.2016.03.032
  5. Structural identification of gravity-type caisson structure via vibration feature analysis vol.15, pp.2, 2015, https://doi.org/10.12989/sss.2015.15.2.259
  6. Evaluation of Vibration Characteristics of an Existing Harbor Caisson Structure Using Tugboat Impact Tests and Modal Analysis vol.9, pp.11, 2013, https://doi.org/10.1155/2013/806482
  7. Vibration-based structural identification of caisson-foundation system via in situ measurement and simplified model vol.26, pp.3, 2019, https://doi.org/10.1002/stc.2315
  8. Quantitative damage identification in tendon anchorage via PZT interface-based impedance monitoring technique vol.20, pp.2, 2013, https://doi.org/10.12989/sss.2017.20.2.181