References
- Askegaard, V. and Mossing, P. (1988), "Long term observation of RC-bridge using changes in natural frequencies", Nord. Concrete Federation, 7, 20-27.
- Box, G.E.P., Jenkins, G.M. and Reinsel, G.C. (1994), Time series analysis-forecasting and control, 3rd Ed, Prentice-Hall: Englewood Cliffs, NJ.
- Chen, Q., Kruger, U. and Leung, A. (2009), "Cointegration testing method for monitoring nonstationary processes", Ind. Eng. Chem. Res., 48(7), 3533-3543. https://doi.org/10.1021/ie801611s
- Cross, E.J., Worden, K. and Chen, Q. (2011), "Cointegration: a novel approach for the removal of environmental trends in structural health monitoring data", Proc. R. Soc. A., 467, 2712-2732. https://doi.org/10.1098/rspa.2011.0023
- Code for Design of Concrete Structures (GB 500102002), Beijing, 2002.
- Dewangan, U.K. (2011), "Structural damage existence prediction with few measurements", Int. J. Eng. Sci. Technol., 3 (10), 7587-7597.
- Dickey, D.A. and Fuller, W.A. (1979), "Distributions of the estimators for auto-regressive time series with a unit root", J. Am. Stat. Assoc., 74, 427-431.
- Dickey, D.A. and Fuller, W. (1981), "Likelihood ratio statistics for autoregressive time series with a unit root", Econometrica, 49, 1057-1072. https://doi.org/10.2307/1912517
- Doebling, S.W. and Farrar, C.R. (1997), "Using statistical analysis to enhance modal-based damage identification", Proceedings of the DAMAS 97: structural damage assessment using advanced signal processing procedures, University of Sheffield, UK.
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based identification methods", Shock Vib., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Engle, R.F. and Granger, C.W.J. (1987), "Cointegration and error-correction: representation, estimation and testing", Econometrica, 55, 251-276. https://doi.org/10.2307/1913236
- Fan, W. and Qiao, P.Z. (2011), "Vibration-based damage identification methods: a review and comparative study", Struct Health Monit., 10(1), 83-111. https://doi.org/10.1177/1475921710365419
- Figueiredo, E., Park, G., Farrar, C.R., Worden, K. and Figueiras, J. (2010), "Machine learning algorithms for damage detection under operational and environmental variability", Struct Health Monit., 10(6), 559-572.
- Fuller, W. (1996), Introduction to statistical time series, Wiley-Interscience, New York.
- Fritzen, C.R., Mengelkamp, G. and Guemes, A. (2003), "Elimination of temperature effects on damage detection within a smart structure concept", Proceedings of the 4th Int. Workshop on Structural Health Monitoring, Stanford University, CA.
- Gao, T. M. (2009), Econometrical analysis methods and modelling, Qinghua Press, Beijing, China.
- Ghrib, F., Li, L. and Wilbur, P. (2012), "Damage identification of Euler-Bernoulli beams using static responses", J. Eng. Mech. - ASCE., 135(5), 405-415.
- Johansen, S. (1988), "Statistical analysis of cointegrating vectors", J. Econom. Dyn. Control, 12(2-3), 231-254. https://doi.org/10.1016/0165-1889(88)90041-3
- Johansen, S. and Juselius, K. (1990), "Maximum likelihood estimation and inference on cointegration with applications to the demand for money", Oxford Bull. Econom. Stat., 52(2), 169-210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x
- Kim, C.Y., Jung, D.S., Kim, N.S., Kwon, S.D. and Feng, M.Q. (2003), "Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration", Earthq. Eng. Eng. Vib., 2(1), 109-115. https://doi.org/10.1007/BF02857543
- Lee, E.T. and Eun, H.C. (2008), "Damage detection of damaged beam by constrained displacement curvature", J. Mech. Sci. Technol., 22(6), 1111-1120. https://doi.org/10.1007/s12206-008-0310-3
- Li, Y.H. (2009). Study on structural modeling and damage identification methods of cracked beams, M.S. thesis, Dalian Univ. of Technol., Dalian, China.
- Loh, C.H., Chen, C.H. and Hsu, T.Y. (2011), "Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam", Struct Health Monit., 10(6), 587-601. https://doi.org/10.1177/1475921710395807
- Monson, H. (1996), Statistical digital signal processing and modeling, John Wiley & Sons, Manhattan.
- Moorty, S.S. and Roeder, C.W. (1992), "Temperature-dependent bridge movements", J. Struct. Eng.- ASCE, 118(4), 1090-1105. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:4(1090)
- Peeters, B. and De Roeck, G. (2000), "One year monitoring of the Z24-bridge: Environmental influences versus damage events", Proceedings of the IMAC-XVIII, San Antonio, TX.
- Sohn, H. (2007), "Effects of environmental and operational variability on structural health monitoring", Philos. T. R. Soc. A., 365, 539-560. https://doi.org/10.1098/rsta.2006.1935
- Wang, Y.L., Liu, X.L. and Fang, C.Q. (2012), "Damage detection of bridges by using displacement data of two symmetrical points", J. Perform. Constr. Fac., 25(3), 300-311.
- Yan, A.M., Kerschen, G., De Boe, P. and Golinval, J.C. (2005), "Structural damage diagnosis under varying environmental conditions - part I: a linear analysis", Mech. Syst. Signal Pr., 19, 847-864. https://doi.org/10.1016/j.ymssp.2004.12.002
- Zhou, H.F, Ni, Y.Q. and Ko, J.M. (2011), "Elimination temperature effect in vibration-based structural damage detection", J. Eng. Mech.- ASCE, 137(12), 785-796. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000273
Cited by
- Extension of indirect displacement estimation method using acceleration and strain to various types of beam structures vol.14, pp.4, 2014, https://doi.org/10.12989/sss.2014.14.4.699
- Overall damage identification of flag-shaped hysteresis systems under seismic excitation vol.16, pp.1, 2015, https://doi.org/10.12989/sss.2015.16.1.163
- Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator vol.17, pp.4, 2016, https://doi.org/10.12989/sss.2016.17.4.647
- Damage identification of a large cable-stayed bridge with novel cointegrated Kalman filter method under changing environments vol.25, pp.5, 2018, https://doi.org/10.1002/stc.2152
- Wavelet-like convolutional neural network structure for time-series data classification vol.22, pp.2, 2018, https://doi.org/10.12989/sss.2018.22.2.175