DOI QR코드

DOI QR Code

Maximum vortex-induced vibrations of a square prism

  • Barrero-Gil, A. (Department of Aerospace Thermal and Fluids Mechanics, School of Aeronautics, Universidad Politecnica de Madrid) ;
  • Fernandez-Arroyo, P. (Department of Aerospace Thermal and Fluids Mechanics, School of Aeronautics, Universidad Politecnica de Madrid)
  • Received : 2011.06.02
  • Accepted : 2012.05.17
  • Published : 2013.07.25

Abstract

This paper presents an experimental investigation concerning the peak amplitudes of oscillation of a square prism due to Vortex-Induced-Vibrations (VIV) as a function of the mass damping parameter $m^*{\zeta}$(the so called Griffin--plot); $m^*$ and ${\zeta}$ being, respectively, the non-dimensional mass and the mechanical (structural) damping ratio. With this purpose in mind, an electromagnetic actuator has been employed to provide controlled damping. During the experiments the mass--damping parameter was in the range 0.15 < $m^*{\zeta}$ < 2.4. Experiments show that there is a value of $m^*{\zeta}$ below which VIV appears combined with galloping and the prism oscillation increases monotonically with the incoming flow velocity. For $m^*{\zeta}$ >0.3 the present experiments show a well-defined VIV phenomenon and, consequently, a Griffin-plot can be defined.

Keywords

References

  1. Amandolese X. and Hemon P. (2010), "Vortex-induced vibration of a square cylinder in wind tunnel", Comptes Rendus Mecanique, 338(1), 12-17. https://doi.org/10.1016/j.crme.2009.12.001
  2. Barrero-Gil, A., Sanz-Andres, A. and Alonso, G. (2009), "Hysteresis in transverse galloping: the role of the inflection points", J. Fluid. Struct., 25, 1007-1020. https://doi.org/10.1016/j.jfluidstructs.2009.04.008
  3. Barrero-Gil A., Sanz-Andres, A. and Alonso, G. (2010), "Energy harvesting from transverse galloping", J. Sound Vib., 329(14), 2873-2883. https://doi.org/10.1016/j.jsv.2010.01.028
  4. Bearman P.W. (1984), "Vortex shedding from oscillating bluff bodies", Annu. Rev. Fluid Mech., 16, 195-222. https://doi.org/10.1146/annurev.fl.16.010184.001211
  5. Bearman P.W. and Obasaju E.D. (1982), "An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders", J. Fluid Mech.,119, 297-321. https://doi.org/10.1017/S0022112082001360
  6. Birkhoff, G. and Zarantello, E.H. (1957), Jets, wakes and cavities, Academic press, New York.
  7. Bishop, R.E. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", P. Roy. Soc. London A., 277, 51-75. https://doi.org/10.1098/rspa.1964.0005
  8. Brika, D. and Laneville A. (1993), "The vortex induced vibrations of long flexible circular cylinder", J. Fluid Mech., 250, 481-508. https://doi.org/10.1017/S0022112093001533
  9. Blevins, R.D. (1990), Flow-induced vibrations, Krieger publishing company, New York.
  10. Cheng, L., Zhou, Y. and Zhang, M.M. (2003), "Perturbed interaction between vortex shedding and induced vibration", J. Fluid. Struct.,17, 887-901. https://doi.org/10.1016/S0889-9746(03)00042-2
  11. Evangelinos, C. and Karniadakis, G. (1999), "Dynamics and flow structures in the turbulent wake of a rigid and flexible cylinders subject to vortex-induced vibrations", J. Fluid Mech.,400, 91-124. https://doi.org/10.1017/S0022112099006606
  12. Facchinetti, M.L., de Langre, E. and Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluid. Struct., 19, 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004
  13. Feng, C.C. (1968), The measurement of vortex induced induced effects in flow past a stationary and oscillating circular and D-section cylinder, M.A.Sc. Thesis, University of British columbia, Canada.
  14. Gabbai R.D. and Benaroya, H. (2005), "An overview of vortex-induced vibration of circular cylinders", J. Sound Vib., 282, 575-616. https://doi.org/10.1016/j.jsv.2004.04.017
  15. Homma S., Maeda J. and Hanada N. (2009), "The damping efficiency of vortex-Induced vibration by tuned-mass damper of a tower-supported steel stack", Wind Struct., 12 (4), 333-347. https://doi.org/10.12989/was.2009.12.4.333
  16. Hover, F.S., Techet, A.H. and Triantafyllou, M.S. (1998), "Forces on oscillating uniform and tapered cylinders in cross-flow", J. Fluid Mech., 363, 97-114. https://doi.org/10.1017/S0022112098001074
  17. Govardhan R. and Williamson C.H. (2006), "Defining the 'modified Griffin plot' in vortex-induced vibration: revealing the effect of Reynolds number using controlled damping", J. Fluid Mech., 561, 147-180. https://doi.org/10.1017/S0022112006000310
  18. Kaneko S., Nakamura T., Inada F. and Kato F. (2008), Flow induced vibrations: classifications and lessons from practical experiences, 1th Ed., Elsevier Science.
  19. Khalak, A. and Williamson, C.H. (1999), "Dynamics of a hydroelastic cylinder with very low mass and damping", J. Fluid. Struct.,13, 813-851. https://doi.org/10.1006/jfls.1999.0236
  20. Kumar R.A. and Gowda B.H.L. (2006), "Flow-induced vibration of a square cylinder without and with interference", J. Fluid. Struct., 22, 345-369. https://doi.org/10.1016/j.jfluidstructs.2005.11.006
  21. Nguyen D.T. and Naudascher E. (1991), "Vibrations of beams and trashracks in parallel and inclined flows", J. Hydraul. Eng.- ASCE, 117(8), 1056-1076. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:8(1056)
  22. Ongoren, A. and Rockwell, D. (1988), "Flow structure from an oscillating cylinder. Part 1. mechanisms of phase shift and recovery in the near wake", J. Fluid Mech.,191, 197-223. https://doi.org/10.1017/S0022112088001569
  23. Okajima, A. (1982), "Strouhal numbers of rectangular cylinders", J. Fluid Mech.,123, 379-398. https://doi.org/10.1017/S0022112082003115
  24. Parkinson, G.V. (1974), Mathematical models of flow-induced-vibrations, flow-induced structural vibrations, Springer.
  25. Prasanth, T.K. and Mittal, S. (2008), "Vortex-induced vibrations of a circular cylinder at low Reynolds numbers", J. Fluid Mech., 594, 463-491.
  26. Sanchez-Sanz, M., Fernandez, B. and Velazquez, A. (2009), "Energy harvesting micro-resonator based on the forces generated by the Karman street around a rectangular cylinder", J. Microelectromech. S., 18 (2), 449-457. https://doi.org/10.1109/JMEMS.2009.2013395
  27. Sanchez-Sanz, M. and Velazquez, A. (2009), "Vortex-induced vibration of a prism in internal flow". J. Fluid Mech., 641, 431-440. https://doi.org/10.1017/S0022112009991893
  28. Sanchez-Sanz, M. and Velazquez, A. (2011), "Passive control of vortex induced vibration in internal flow using body shape ", J. Fluid. Struct., 27(7), 976-985. https://doi.org/10.1016/j.jfluidstructs.2011.04.013
  29. Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct.,19, 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
  30. Sarpkaya, T. (1978), "Fluid forces on oscillating cylinders", J. Waterw. Port C. - ASCE, 104, 275-290.
  31. Semin, B., Decoene, A., Hulin, J.P., François, M.L.M. and Auradou, H. (2012), "New oscillatory instability of a confined cylinder in a flow below the vortex shedding threshold", J. Fluid Mech., 690, 345-365. https://doi.org/10.1017/jfm.2011.435
  32. Vasallo, A., Lorenzana, A. and Roosi, R. (2012), "Lock-in and drag amplification effects in slender line-like structures through CFD", Wind Struct., 15( 3), 189-208. https://doi.org/10.12989/was.2012.15.3.189
  33. Wang, Z.J. and Zhou, Y. (2005), "Vortex-induced vibration characteristics of an elastic square cylinder on fixed supports", J. Fluid. Eng. - T ASME , 127, 241-249. https://doi.org/10.1115/1.1881693
  34. Wang, D.A. and Ko, H.H. (2010), "Piezoelectric energy harvesting from flow-induced vibration", J. Micromech. Microeng., 20(2), 025019 doi:10.1088/09601317/20/2/025019.
  35. Williamson, C.H. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36, 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
  36. Williamson, C.H. and Govardhan, R. (2008). "A brief review of recent results in vortex-induced vibrations", J. Wind Eng. Aerod., 96 (6-7), 13-735.
  37. Williamson, C.H. and Roshko A. (1988). "Vortex formation in the wake of an oscillating cylinder", J. Fluid. Struct., 2, 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8

Cited by

  1. Experimental Investigation on Soft Galloping and Hard Galloping of Triangular Prisms vol.7, pp.2, 2017, https://doi.org/10.3390/app7020198