DOI QR코드

DOI QR Code

Multiscale finite element method applied to detached-eddy simulation for computational wind engineering

  • Zhang, Yue (NSERC-J.-Armand Bombardier Industrial Research Chair for Multi-disciplinary Analysis and Design of Aerospace Systems CFD Lab, Department of Mechanical Engineering, McGill University Montreal) ;
  • Khurram, Rooh A. (NSERC-J.-Armand Bombardier Industrial Research Chair for Multi-disciplinary Analysis and Design of Aerospace Systems CFD Lab, Department of Mechanical Engineering, McGill University Montreal) ;
  • Habashi, Wagdi G. (NSERC-J.-Armand Bombardier Industrial Research Chair for Multi-disciplinary Analysis and Design of Aerospace Systems CFD Lab, Department of Mechanical Engineering, McGill University Montreal)
  • Received : 2011.11.19
  • Accepted : 2012.04.30
  • Published : 2013.07.25

Abstract

A multiscale finite element method is applied to the Spalart-Allmaras turbulence model based detached-eddy simulation (DES). The multiscale arises from a decomposition of the scalar field into coarse (resolved) and fine (unresolved) scales. It corrects the lack of stability of the standard Galerkin formulation by modeling the scales that cannot be resolved by a given spatial discretization. The stabilization terms appear naturally and the resulting formulation provides effective stabilization in turbulent computations, where reaction-dominated effects strongly influence near-wall predictions. The multiscale DES is applied in the context of high-Reynolds flow over the Commonwealth Advisory Aeronautical Council (CAARC) standard tall building model, for both uniform and turbulent inflows. Time-averaged pressure coefficients on the exterior walls are compared with experiments and it is demonstrated that DES is able to resolve the turbulent features of the flow and accurately predict the surface pressure distributions under atmospheric boundary layer flows.

Keywords

References

  1. Architectural Institute of Japan (2004), Recommendations for loads on buildings, Architectural Institute of Japan.
  2. Aube, M.S., Habashi, W.G., Wang, H.Z. and Torok, D. (2010), "On the impact of anisotropic mesh adaptation on computational wind engineering", Int. J. Numer. Meth. Fl., 63(7), 877-886.
  3. Beaugendre, H., Morency, F. and Habashi, W.G. (2006), "Development of a second generation in-flight icing simulation code", J. Fluid. Eng. -T ASME, 128, 378-387. https://doi.org/10.1115/1.2169807
  4. Braun, A.L. and Awruch, A.M. (2009), "Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation", Comput. Struct., 87, 564-581. https://doi.org/10.1016/j.compstruc.2009.02.002
  5. Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Meth. Appl. Mech. Eng., 32(1-3), 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
  6. Franca, L.P., Farhat, C., Lesoinne, M. and Russo A. (1998), "Unusual stabilized finite element methods and residual free bubbles", Int. J. Numer. Meth. Fl., 27 (2), 159-168. https://doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<159::AID-FLD656>3.0.CO;2-8
  7. Goliger, A.M. and Milford, R.V. (1988), "Sensitivity of the CAARC standard building model to geometric scale and turbulence", J. Wind Eng. Ind. Aerod., 31, 105-123. https://doi.org/10.1016/0167-6105(88)90190-0
  8. Haupt, S.E., Zajaczkowski, F.J. and Peltier, L.J. (2011), "Detached eddy simulation of atmospheric flow about a surface mounted cube at high Reynolds number". J. Fluid. Eng. -T ASME, 133(3), in press.
  9. Huang, S.H. and Li, Q.S. (2010), "Large eddy simulation of wind effects on a super-tall building", Wind Struct., 13(6), 557-580. https://doi.org/10.12989/was.2010.13.6.557
  10. Huang, S.H., Li, Q.S. and Wu, J.R. (2010), "A general inflow turbulence generator for large eddy simulation", J. Wind Eng. Ind. Aerod., 98, 600-617. https://doi.org/10.1016/j.jweia.2010.06.002
  11. Huang, S.H., Li, Q.S. and Xu, S.L. (2007) "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res., 63, 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033
  12. Hughes, T.J.R. (1995), "Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods", Comput. Meth. Appl. Mech. Eng., 127, 387-401. https://doi.org/10.1016/0045-7825(95)00844-9
  13. Hughes, T.J.R., Franca, L.P. and Hulbert, G.M. (1989), "A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations", Comput. Meth. Appl. Mech. Eng., 73(2), 173-189. https://doi.org/10.1016/0045-7825(89)90111-4
  14. Kataoka, H. (2008), "Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer", J. Wind Eng. Ind. Aerod., 96, 1985-1997. https://doi.org/10.1016/j.jweia.2008.02.061
  15. Khurram, R.A. and Habashi, W.G. (2011), "Multiscale/Stabilized finite element method for Spalart-Allmaras turbulence model", Proceedings of the International Conference on Finite Elements in Flow Problems. Book of Abstracts, (Eds. Wall W. A. and Gravemeier V. ), 120, Munich, Germany.
  16. Khurram, R.A. and Masud, A. (2006), "A multiscale/stabilized formulation of the incompressible Navier-Stokes equations for moving boundary flows and fluid-structure interaction", Comput. Mech., 38, 403-416. https://doi.org/10.1007/s00466-006-0059-4
  17. Khurram, R.A., Zhang, Y. and Habashi, W.G. (2012), "Multiscale finite element method applied to the Spalart-Allmaras turbulence model for 3D detached-eddy simulation", Comp. Meth. Appl. Mech. Eng., (available on line) DOI: 10.1016/j.cma.2012.01.007.
  18. Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016
  19. Masud, A. and Khurram, R.A. (2004), "A multiscale/stabilized finite element method for the advection-diffusion equation", Comput. Meth. Appl. Mech. Eng., 193, 1997-2018. https://doi.org/10.1016/j.cma.2003.12.047
  20. Masud, A. and Khurram, R.A. (2006), "A multiscale finite element method for the incompressible Navier-Stokes equations", Comput. Meth. Appl. Mech. Eng., 195 (13-16), 1750-1777. https://doi.org/10.1016/j.cma.2005.05.048
  21. Melbourne, W.H. (1980), "Comparison of measurements of the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6, 78-88.
  22. Morency F., Beaugendre, H., Baruzzi, G.S. and Habashi, W.G. (2001), "FENSAP-ICE: A comprehensive 3D simulation tool for in-flight Icing", AIAA Paper 2001-2566, Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA.
  23. Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X
  24. Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90, 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3
  25. Obasaju, E.D. (1992), "Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 40, 103-126. https://doi.org/10.1016/0167-6105(92)90361-D
  26. Shiotani. M. and Iwatani, Y. (1976), "Horizontal space correlations of velocity fluctuations during strong winds", J. Meteorol. Soc. Jpn., 54, 59-67. https://doi.org/10.2151/jmsj1965.54.1_59
  27. Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures-fundamentals and applications to design, John Wiley & Sons, Inc., New York.
  28. Spalart, P.R. and Allmaras, S.R. (1994), "A one-equation turbulence model for aerodynamic flows", La Recherche Aerospatiale, 1, 5-21.
  29. Spalart, P.R., Jou, W.H., Strelets, M. and Allmaras, S.R. (1997), "Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach", Proceedings of the 1st AFOSR International Conference on DNS/LES, (Ed. Liu, C. and Liu, Z.) Greyden, Columbus, OH. 137-147.
  30. Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96(10-11), 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034
  31. Tanaka, H. and Lawen, N. (1986), "Test on the CAARC standard tall building model with a length scale of 1:1000", J. Wind Eng. Ind. Aerod., 25, 15-29. https://doi.org/10.1016/0167-6105(86)90102-9
  32. Tezduyar, T.E. and Sathe S. (2007), "Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques", Int. J. Numer. Meth. Fl., 54, 855-900. https://doi.org/10.1002/fld.1430
  33. Tezduyar, T.E., Takizawa, K., Moorman, C.M., Wright, S. and Christopher J. (2009), "Space-time finite element computation of complex fluid-structure interactions", Int. J. Numer. Meth. Fl., 64, 1201-1218.

Cited by

  1. Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.11.008
  2. Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils vol.53, pp.1, 2016, https://doi.org/10.2514/1.C033253