References
- Architectural Institute of Japan (2004), Recommendations for loads on buildings, Architectural Institute of Japan.
- Aube, M.S., Habashi, W.G., Wang, H.Z. and Torok, D. (2010), "On the impact of anisotropic mesh adaptation on computational wind engineering", Int. J. Numer. Meth. Fl., 63(7), 877-886.
- Beaugendre, H., Morency, F. and Habashi, W.G. (2006), "Development of a second generation in-flight icing simulation code", J. Fluid. Eng. -T ASME, 128, 378-387. https://doi.org/10.1115/1.2169807
- Braun, A.L. and Awruch, A.M. (2009), "Aerodynamic and aeroelastic analyses on the CAARC standard tall building model using numerical simulation", Comput. Struct., 87, 564-581. https://doi.org/10.1016/j.compstruc.2009.02.002
- Brooks, A.N. and Hughes, T.J.R. (1982), "Streamline upwind/Petrov-Galerkin formulations for convection-dominated flows with particular emphasis on the incompressible Navier-Stokes equations", Comput. Meth. Appl. Mech. Eng., 32(1-3), 199-259. https://doi.org/10.1016/0045-7825(82)90071-8
- Franca, L.P., Farhat, C., Lesoinne, M. and Russo A. (1998), "Unusual stabilized finite element methods and residual free bubbles", Int. J. Numer. Meth. Fl., 27 (2), 159-168. https://doi.org/10.1002/(SICI)1097-0363(199801)27:1/4<159::AID-FLD656>3.0.CO;2-8
- Goliger, A.M. and Milford, R.V. (1988), "Sensitivity of the CAARC standard building model to geometric scale and turbulence", J. Wind Eng. Ind. Aerod., 31, 105-123. https://doi.org/10.1016/0167-6105(88)90190-0
- Haupt, S.E., Zajaczkowski, F.J. and Peltier, L.J. (2011), "Detached eddy simulation of atmospheric flow about a surface mounted cube at high Reynolds number". J. Fluid. Eng. -T ASME, 133(3), in press.
- Huang, S.H. and Li, Q.S. (2010), "Large eddy simulation of wind effects on a super-tall building", Wind Struct., 13(6), 557-580. https://doi.org/10.12989/was.2010.13.6.557
- Huang, S.H., Li, Q.S. and Wu, J.R. (2010), "A general inflow turbulence generator for large eddy simulation", J. Wind Eng. Ind. Aerod., 98, 600-617. https://doi.org/10.1016/j.jweia.2010.06.002
- Huang, S.H., Li, Q.S. and Xu, S.L. (2007) "Numerical evaluation of wind effects on a tall steel building by CFD", J. Constr. Steel Res., 63, 612-627. https://doi.org/10.1016/j.jcsr.2006.06.033
- Hughes, T.J.R. (1995), "Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods", Comput. Meth. Appl. Mech. Eng., 127, 387-401. https://doi.org/10.1016/0045-7825(95)00844-9
- Hughes, T.J.R., Franca, L.P. and Hulbert, G.M. (1989), "A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations", Comput. Meth. Appl. Mech. Eng., 73(2), 173-189. https://doi.org/10.1016/0045-7825(89)90111-4
- Kataoka, H. (2008), "Numerical simulations of a wind-induced vibrating square cylinder within turbulent boundary layer", J. Wind Eng. Ind. Aerod., 96, 1985-1997. https://doi.org/10.1016/j.jweia.2008.02.061
- Khurram, R.A. and Habashi, W.G. (2011), "Multiscale/Stabilized finite element method for Spalart-Allmaras turbulence model", Proceedings of the International Conference on Finite Elements in Flow Problems. Book of Abstracts, (Eds. Wall W. A. and Gravemeier V. ), 120, Munich, Germany.
- Khurram, R.A. and Masud, A. (2006), "A multiscale/stabilized formulation of the incompressible Navier-Stokes equations for moving boundary flows and fluid-structure interaction", Comput. Mech., 38, 403-416. https://doi.org/10.1007/s00466-006-0059-4
- Khurram, R.A., Zhang, Y. and Habashi, W.G. (2012), "Multiscale finite element method applied to the Spalart-Allmaras turbulence model for 3D detached-eddy simulation", Comp. Meth. Appl. Mech. Eng., (available on line) DOI: 10.1016/j.cma.2012.01.007.
- Mannini, C., Soda, A. and Schewe, G. (2011), "Numerical investigation on the three-dimensional unsteady flow past a 5:1 rectangular cylinder", J. Wind Eng. Ind. Aerod., 99(4), 469-482. https://doi.org/10.1016/j.jweia.2010.12.016
- Masud, A. and Khurram, R.A. (2004), "A multiscale/stabilized finite element method for the advection-diffusion equation", Comput. Meth. Appl. Mech. Eng., 193, 1997-2018. https://doi.org/10.1016/j.cma.2003.12.047
- Masud, A. and Khurram, R.A. (2006), "A multiscale finite element method for the incompressible Navier-Stokes equations", Comput. Meth. Appl. Mech. Eng., 195 (13-16), 1750-1777. https://doi.org/10.1016/j.cma.2005.05.048
- Melbourne, W.H. (1980), "Comparison of measurements of the CAARC standard tall building model in simulated model wind flows", J. Wind Eng. Ind. Aerod., 6, 78-88.
- Morency F., Beaugendre, H., Baruzzi, G.S. and Habashi, W.G. (2001), "FENSAP-ICE: A comprehensive 3D simulation tool for in-flight Icing", AIAA Paper 2001-2566, Proceedings of the 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA.
- Murakami, S. (1998), "Overview of turbulence models applied in CWE-1997", J. Wind Eng. Ind. Aerod., 74-76, 1-24. https://doi.org/10.1016/S0167-6105(98)00004-X
- Nozawa, K. and Tamura, T. (2002), "Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer", J. Wind Eng. Ind. Aerod., 90, 1151-1162. https://doi.org/10.1016/S0167-6105(02)00228-3
- Obasaju, E.D. (1992), "Measurement of forces and base overturning moments on the CAARC tall building model in a simulated atmospheric boundary layer", J. Wind Eng. Ind. Aerod., 40, 103-126. https://doi.org/10.1016/0167-6105(92)90361-D
- Shiotani. M. and Iwatani, Y. (1976), "Horizontal space correlations of velocity fluctuations during strong winds", J. Meteorol. Soc. Jpn., 54, 59-67. https://doi.org/10.2151/jmsj1965.54.1_59
- Simiu, E. and Scanlan, R.H. (1996), Wind effects on structures-fundamentals and applications to design, John Wiley & Sons, Inc., New York.
- Spalart, P.R. and Allmaras, S.R. (1994), "A one-equation turbulence model for aerodynamic flows", La Recherche Aerospatiale, 1, 5-21.
- Spalart, P.R., Jou, W.H., Strelets, M. and Allmaras, S.R. (1997), "Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach", Proceedings of the 1st AFOSR International Conference on DNS/LES, (Ed. Liu, C. and Liu, Z.) Greyden, Columbus, OH. 137-147.
- Tamura, T. (2008), "Towards practical use of LES in wind engineering", J. Wind Eng. Ind. Aerod., 96(10-11), 1451-1471. https://doi.org/10.1016/j.jweia.2008.02.034
- Tanaka, H. and Lawen, N. (1986), "Test on the CAARC standard tall building model with a length scale of 1:1000", J. Wind Eng. Ind. Aerod., 25, 15-29. https://doi.org/10.1016/0167-6105(86)90102-9
- Tezduyar, T.E. and Sathe S. (2007), "Modeling of fluid-structure interactions with the space-time finite elements: Solution techniques", Int. J. Numer. Meth. Fl., 54, 855-900. https://doi.org/10.1002/fld.1430
- Tezduyar, T.E., Takizawa, K., Moorman, C.M., Wright, S. and Christopher J. (2009), "Space-time finite element computation of complex fluid-structure interactions", Int. J. Numer. Meth. Fl., 64, 1201-1218.
Cited by
- Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.11.008
- Zonal Detached-Eddy Simulation of Turbulent Unsteady Flow over Iced Airfoils vol.53, pp.1, 2016, https://doi.org/10.2514/1.C033253