DOI QR코드

DOI QR Code

Study on frictional behavior of carbon nanotube with respect to potential function by molecular dynamics simulation

카본나노튜브의 포텐셜 함수에 따른 마찰거동에 대한 분자동역학 시뮬레이션 연구

  • Received : 2013.09.16
  • Accepted : 2013.09.24
  • Published : 2013.09.25

Abstract

Frictional behavior of a single carbon nanotube(CNT) was investigated using molecular dynamics simulation. A single CNT aligned horizontally on silver or graphene substrate was modeled to evaluate its frictional behavior such as frictional force and rolling/sliding motion with respect to potential parameter and lattice structure of the substrate. As a result, it was found that friction and rolling was affected by adhesion between two surfaces and period of the rolling depended on lattice distance of the substrate.

Keywords

References

  1. J. Cumings, A. Zettl, 2000, "Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes", Science, Vol. 289, pp. 602-604. https://doi.org/10.1126/science.289.5479.602
  2. L. Guo, R. Wang, H. Xu, J. Liang, 2005, "Wear-resistance comparison of carbon nanotubes and conventional silicon-probes for atomic force microscopy", Wear, Vol. 258, pp. 1836-1839. https://doi.org/10.1016/j.wear.2004.12.046
  3. H. Cai, F. Yan, Q. Xue, 2004, "Investigation of tribological properties of polyimide/carbon nanotube nanocomposites", Materials Science and Engineering A., Vol. 364, pp. 94-100. https://doi.org/10.1016/S0921-5093(03)00669-5
  4. B. Yu, Z. Liu, F. Zhou, W. Liu, Y. Liang, 2008, "A novel lubricant additive based on carbon nanotubes for ionic liquids", Materials Letters, Vol. 62, pp.2967-2969. https://doi.org/10.1016/j.matlet.2008.01.128
  5. M. A. Lantz, B. Gotsmann, U. T. Dürig, P. Vettiger, Y. Nakayama et al., 2003, "Carbon nanotube tips for thermomechanical data storage", Applied Physics Letters, Vol. 83, No. 6, pp.1266-1268. https://doi.org/10.1063/1.1600835
  6. E. Bichoutskaia, A. M. Popov, and Y. E. Lozovik, 2008, "Nanotube-based data storage devices", Materials Today, Vol. 11, No. 6, pp. 38-43.
  7. J. M. Kinaret, T. Nord, and S. Viefers, 2003 ,"A carbon-nanotube-based nanorelay", Applied Physics Letters, Vol. 82, No. 8, pp. 1287-1289. https://doi.org/10.1063/1.1557324
  8. J. Cumings and A. Zettl, 2000, "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes", Vol. 289, pp. 602-604.
  9. M. Falvo, R. Taylor, A. Helser, V. Chi, F. Brooks et al., 1999, "Nanometre scale rolling and sliding of carbon nanotubes", Nature, Vol. 397, pp. 236-238. https://doi.org/10.1038/16662
  10. P. Dickrell, S. Sinnott, D. Hahn, N. Raravikar, L. Schadler et al., 2005, "Frictional anisotropy of oriented carbon nanotube surfaces", Tribology Letters, Vol. 18, pp. 59-62. https://doi.org/10.1007/s11249-004-1752-0
  11. J. Hu J, Jo S, Z. Ren, A. Voevodin, J. Zabinski, 2005, "Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel", Tribology Letters, Vol. 19, pp. 119-125 2005;19:119-25. https://doi.org/10.1007/s11249-005-5091-6
  12. D. Brenner, O. Shenderova, J. Harrison, S. Stuart, B. Ni et al.,2002, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons", Journal of Physics: Condensed Matter, Vol. 14, pp.783-802. https://doi.org/10.1088/0953-8984/14/4/312
  13. H.-J. Kim and D.-E. Kim, 2012, "MD simulation of the frictional behavior of CNTs with respect to orientation", Vol. 50, pp. 51-56.