DOI QR코드

DOI QR Code

Electrophysiological Functions of Intracellular Amyloid β in Specific for Cultured Human Neurones and its Impairment Properties

  • Merlin, Jayalal L.P. (Department of Biochemistry, Bharathidasan college of Arts and Science)
  • Received : 2013.09.02
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

Prevailing role of intracellular amyloid ${\beta}$ ($iA{\beta}$) in Alzheimer's disease (AD) initiation and progression attracts more and more attention in recent years. To address whether $iA{\beta}$ induces early alterations of electrophysiological properties in cultured human primary neurons, we delivered $iA{\beta}$ with adenovirus and measured the electrophysiological properties of infected neurons with whole-cell recordings. Our results show that $iA{\beta}$ induces an increase in neuronal resting membrane potentials, a decrease in $K^+$ currents and a hyperpolarizing shift in voltage-dependent activation of $K^+$ currents. These results suggest the electrophysiological impairments induced by $iA{\beta}$ may be responsible for its neuronal toxicity.

Keywords

References

  1. C.G. Almeida, R.H. Takahashi, and G.K. Gouras, "Beta-amyloid accumulation impairs multivesicular body sorting by inhibiting the ubiquitin-proteasome system", J. Neurosci., Vol. 26, pp. 4277-4288, 2006. https://doi.org/10.1523/JNEUROSCI.5078-05.2006
  2. N. Arispe, H.B. Pollard, and E. Rojas, "Giant multilevel cation channels formed by Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes", Proc. Natl. Acad. Sci. U.S.A, Vol. 90, pp. 10573-10577, 1993. https://doi.org/10.1073/pnas.90.22.10573
  3. V. Askanas, W.K. Engel, and R.B. Alvarez, "Light and electron microscopic localization of beta-amyloid protein in muscle biopsies of patients with inclusion-body myositis", Am. J. Pathol., Vol. 141, pp. 31-36, 1992.
  4. J.P. Borg, J. Ooi, E. Levy, and B. Margolis, "The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTYmotif of amyloid precursor protein", Mol. Cell Biol., Vol. 16, pp. 6229-6241, 1996. https://doi.org/10.1128/MCB.16.11.6229
  5. J. Busciglio, A. Pelsman, C. Wong, G. Pigino, M. Yuan, H. Mori, and B.A. Yankner, "Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down's syndrome", Neuron, Vol. 33, pp. 677-688.
  6. C. Chen, "Beta-amyloid increases dendritic Ca2+ influx by inhibiting the A-type K+ current in hippocampal CA1 pyramidal neurons", Biochem. Biophys. Res. Commun., Vol. 338, pp. 1913-1919, 2005. https://doi.org/10.1016/j.bbrc.2005.10.169
  7. Q. Chen, J. Cui, Y. Zhang, and L.C. Yu, "Prolonged morphine application modulates Bax and Hsp70 levels in primary rat neurons", Neurosci. Lett., Vol. 441, pp. 311-314, 2008. https://doi.org/10.1016/j.neulet.2008.06.067
  8. A.S. Chyung, B.D. Greenberg, D.G. Cook, R.W. Doms, and V.M. Lee, "Novel betasecretase cleavage of beta-amyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells", J. Cell Biol., Vol. 138, pp. 671-680, 1997. https://doi.org/10.1083/jcb.138.3.671
  9. J. Cui, Q. Chen, L.C. Yu, and Y. Zhang, "Chronic morphine application is protective against cell death in primary human neurons", Neuroreport, Vol. 19, pp. 1745-1749, 2008. https://doi.org/10.1097/WNR.0b013e3283186fd7
  10. M.R. D'Andrea, R.G. Nagele, N.A. Gumula, P.A. Reiser, D.A. Polkovitch, B.M. Hertzog, and P. Andrade-Gordon, "Lipofuscin and Abeta42 exhibit distinct distribution patterns in normal and Alzheimer's disease brains", Neurosci. Lett., Vol. 323, pp. 45-49, 2002. https://doi.org/10.1016/S0304-3940(01)02444-2
  11. M.R. D'Andrea, R.G. Nagele, H.Y. Wang, P.A. Peterson, and D.H. Lee, "Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease", Histopathology, Vol. 38, pp. 120-134, 2001. https://doi.org/10.1046/j.1365-2559.2001.01082.x
  12. T.A. Good, D.O. Smith, and R.M. Murphy, "Beta-amyloid peptide blocks the fastinactivating K+ current in rat hippocampal neurons", Biophys. J., Vol. 70, pp. 296-304, 1996. https://doi.org/10.1016/S0006-3495(96)79570-X
  13. G.K. Gouras, J. Tsai, J. Naslund, B. Vincent, M. Edgar, F. Checler, J.P. Greenfield, V. Haroutunian, J.D. Buxbaum, H. Xu, P. Greengard, and N.R. Relkin, "Intraneuronal abeta42 accumulation in human brain", Am. J. Pathol., Vol. 156, pp. 15-20, 2000. https://doi.org/10.1016/S0002-9440(10)64700-1
  14. J.P. Greenfield, J. Tsai, G.K. Gouras, B. Hai, G. Thinakaran, F. Checler, S.S. Sisodia, P. Greengard, and H. Xu, "Endoplasmic reticulum and trans-Golgi network generate distinct populations of Alzheimer beta-amyloid peptides", Proc. Natl. Acad. Sci. U.S.A, Vol. 96, pp. 742-747, 1999. https://doi.org/10.1073/pnas.96.2.742
  15. L.Y. Jin-Shun Qi, and J.-T. Qiao, "Amyloid beta-protein fragment 31-35 suppresses delayed rectifying potassium channels in membrane patches excised fromhippocampal neurons in rats", Synapse, Vol. 51, pp. 165-172, 2004. https://doi.org/10.1002/syn.10299
  16. M. Kawahara and Y. Kuroda, "Molecular mechanism of neurodegeneration induced by Alzheimer's beta-amyloid protein: channel formation and disruption of calcium homeostasis", Brain Res. Bull., Vol. 53, pp. 389-397, 2000. https://doi.org/10.1016/S0361-9230(00)00370-1
  17. M. Kawahara, Y. Kuroda, N. Arispe, and E. Rojas, "Alzheimer's beta-amyloid, human islet amylin, and prion protein fragment evoke intracellular free calcium elevations by a common mechanism in a hypothalamic GnRH neuronal cell line", J. Biol. Chem., Vol. 275, pp. 14077-14083, 2000. https://doi.org/10.1074/jbc.275.19.14077
  18. E.H. Koo and S.L. Squazzo, "Evidence that production and release of amyloid betaprotein involves the endocytic pathway", J. Biol. Chem., Vol. 269, pp. 17386-17389, 1994.
  19. K.S. Kosik, "Alzheimer's disease: a cell biological perspective", Science, Vol. 256, pp. 780-783, 1992. https://doi.org/10.1126/science.1589757
  20. F.M. LaFerla, B.T. Tinkle, C.J. Bieberich, C.C. Haudenschild, and G. Jay, "The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice", Nat. Genet., Vol. 9, pp. 21-30, 1995. https://doi.org/10.1038/ng0195-21
  21. S.J. Lee, U. Liyanage, P.E. Bickel,W. Xia, P.T. Lansbury Jr., and K.S. Kosik, "A detergentinsoluble membrane compartment contains A beta in vivo", Nat. Med., Vol. 4, pp. 730-734, 1998. https://doi.org/10.1038/nm0698-730
  22. M.P. Mattson, B. Cheng, D. Davis, K. Bryant, I. Lieberburg, and R.E. Rydel, "beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity", J. Neurosci., Vol. 12, pp. 376-389, 1992.
  23. R.G. Nagele, M.R. D'Andrea, W.J. Anderson, and H.Y. Wang, "Intracellular accumulation of beta-amyloid (1-42) in neurons is facilitated by the alpha7 nicotinic acetylcholine receptor in Alzheimer's disease", Neuroscience, Vol. 110, pp. 199-211, 2002. https://doi.org/10.1016/S0306-4522(01)00460-2
  24. D.L. Price and S.S. Sisodia, "Mutant genes in familial Alzheimer's disease and transgenic models", Annu. Rev. Neurosci., Vol. 21, pp. 479-505, 1998. https://doi.org/10.1146/annurev.neuro.21.1.479
  25. T. Tabira, D.H. Chui, and S. Kuroda, "Significance of intracellular Abeta42 accumulation in Alzheimer's disease", Front Biosci., Vol. 7, pp. a44-a49, 2002. https://doi.org/10.2741/tabira
  26. M. Taglialatela, A.M. Vandongen, J.A. Drewe, R.H. Joho, A.M. Brown, and G.E. Kirsch, "Patterns of internal and external tetraethylammonium block in four homologous K+ channels", Mol. Pharmacol., Vol. 40, pp. 299-307, 1991.
  27. R.H. Takahashi, T.A. Milner, F. Li, E.E.Nam, M.A. Edgar, H. Yamaguchi, M.F. Beal, H. Xu, P. Greengard, and G.K. Gouras, "Intraneuronal Alzheimer abeta42 accumulates in multivesicular bodies and is associated with synaptic pathology", Am. J. Pathol., Vol. 161, pp. 1869-1879, 2002. https://doi.org/10.1016/S0002-9440(10)64463-X
  28. P.J. Tienari, N. Ida, E. Ikonen, M. Simons, A. Weidemann, G. Multhaup, C.L. Masters, C.G. Dotti, and K. Beyreuther, "Intracellular and secreted Alzheimer betaamyloid species are generated by distinct mechanisms in cultured hippocampal neurons", Proc. Natl. Acad. Sci. U.S.A, Vol. 94, pp. 4125-4130, 1997. https://doi.org/10.1073/pnas.94.8.4125
  29. K. Ueda, S. Shinohara, T. Yagami, K. Asakura, and K. Kawasaki, "Amyloid beta protein potentiates Ca2+ influx through L-type voltage-sensitive Ca2+ channels: a possible involvement of free radicals", J. Neurochem., Vol. 68, pp. 265-271, 1997.
  30. M.M. Verbeek, I. Otte-Holler, J.A. Fransen, and R.M. de Waal, "Accumulation of the amyloid-beta precursor protein in multivesicular body-like organelles", J. Histochem. Cytochem., Vol. 50, pp. 681-690, 2002. https://doi.org/10.1177/002215540205000509
  31. H.Y. Wang, M.R. D'Andrea, and R.G. Nagele, "Cerebellar diffuse amyloid plaques are derived from dendritic Abeta42 accumulations in Purkinje cells", Neurobiol. Aging, Vol. 23, pp. 213-223, 2002. https://doi.org/10.1016/S0197-4580(01)00279-2
  32. O. Wirths, G. Multhaup, C. Czech, V. Blanchard, S. Moussaoui, G. Tremp, L. Pradier, K. Beyreuther, and T.A. Bayer, "Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 doubletransgenic mice", Neurosci. Lett., Vol. 306, pp. 116-120, 2001. https://doi.org/10.1016/S0304-3940(01)01876-6
  33. C. Xu, C. Qian, Z. Zhang, C.Wu, P. Zhou, and X. Liang, "Effects of beta-amyloid peptide on transient outward potassium current of acutely dissociated hippocampal neurons in CA1 sector in rats", Chin. Med. J., Vol. 11, pp. 492-495, 1998.
  34. A.J. Yang, D. Chandswangbhuvana, L. Margol, and C.G. Glabe, "Loss of endosomal/lysosomal membrane impermeability is an early event in amyloid Abeta1-42 pathogenesis", J. Neurosci. Res., Vol. 52, pp. 691-698, 1998. https://doi.org/10.1002/(SICI)1097-4547(19980615)52:6<691::AID-JNR8>3.0.CO;2-3
  35. Y. Zhang, R. McLaughlin, C. Goodyer, and A. LeBlanc, "Selective cytotoxicity of intracellular amyloid beta peptide1-42 through p53 and Bax in cultured primary human neurons", J. Cell Biol., Vol. 156, pp. 519-529, 2002. https://doi.org/10.1083/jcb.200110119