초록
본 논문에서는 희소한 신호의 압축센싱를 위해 확률적 배제에 기반한 직교정합추구 (PEOMP) 신호 복원 알고리듬을 제안하였다. CoSaMP, gOMP, BAOMP 등의 알고리듬들은 매 반복 단계에서 새로운 atom들을 support set에 추가할 뿐만 아니라 부적절하다고 판단되어지는 atom들은 삭제하기 때문에 우수한 신호 복원 성능을 보인다. 그러나 반복 과정 중에 support set의 구성이 국소 최저점에서 벗어나지 못하여 신호 복원에 실패하는 경우가 발생하는 단점을 가지고 있다. 제안된 알고리듬은 매 반복 단계에서 확률적으로 임의의 atom을 배제하여 support set이 국소 최저점에 빠져 있는 경우 그곳에서 탈출하는데 도움을 준다. 모의실험을 통해 PEOMP가 기존의 OMP 기반의 알고리듬들과 $l_1$ 최적화 방법보다 신호 복원 능력 관점에서 우수한 성능을 보임을 확인하였다.
In this paper, the probabilistic exclusion based orthogonal matching pursuit (PEOMP) algorithm for the sparse signal reconstruction is proposed. Some of recent greedy algorithms such as CoSaMP, gOMP, BAOMP improved the reconstruction performance by deleting unsuitable atoms at each iteration. They still often fail to converge to the solution because the support set could not escape from a local minimum. PEOMP helps to escape by excluding a random atom in the support set according to a well-chosen probability function. Experimental results show that PEOMP outperforms several OMP based algorithms and the $l_1$ optimization method in terms of exact reconstruction probability.