DOI QR코드

DOI QR Code

Effect of cavitation for electrochemical characteristics in seawater for austenitic 304 stainless steel

오스테나이트계 STS 304강의 해수 내 전기화학적 특성에 미치는 캐비테이션의 영향

  • Kim, Seong-Jong (Division of marine engineering, Mokpo national maritime university) ;
  • Lee, Seung-Jun (Division of marine engineering, Mokpo national maritime university) ;
  • Chong, Sang-Ok (Division of marine engineering, Mokpo national maritime university)
  • Received : 2013.04.10
  • Accepted : 2013.07.05
  • Published : 2013.07.31

Abstract

With the industrial acceleration in a lot of countries of the world, the demand for anti-corrosion and anti-abrasion material increases continuously. Particularly, stainless steel with the fine surface and excellent corrosion resistance is widely used in various industrial fields including ship, offshore structures tidal power plant, and etc. In marine environment, however, it is easy to generate by the corrosion damage by $Cl^-$ ion and cavitation damage due to high rotation speed on stainless steel. Therefore, in this research, the cavitation erosion-corrosion test (Hybrid test) was performed for 304 stainless steel specimen used in the high flow rate seawater environment. And the cavitation damage behavior in the corrosive environment was analyzed overall. The high hardness was shown due to the formation of compressive residual stress by the water cavitation peening effect in cavitation condition. However, high current density in the potentiodynamic polarization experiment presented with the breakdown of the passive film caused by physical impact. Therefore, both electrochemical characteristics and mechanical properties must be taken into account to improve the cavitation resistance in seawater.

세계 각국은 산업 고도화에 따라 해수환경에 내식성, 내마모성을 갖는 재료에 대한 수요가 지속적으로 증가하고 있다. 특히 표면이 미려하고 내식성이 강한 스테인리스강은 선박, 해양 플랜트 및 조류발전 등 다양한 산업분야에 널리 사용되고 있다. 그러나 해양환경에서 $Cl^-$ 이온에 의한 부식 손상과 고속회전에 따라 캐비테이션 손상이 발생하기 쉽다. 따라서 이 연구에서는 해수 내 빠른 유속 환경에 사용되는 304 스테인리스강에 대해 캐비테이션 침식-부식실험을 실시하여 외부 조건이 스테인리스강의 내식성에 미치는 영향을 종합 분석하였다. 캐비테이션이 발생된 조건에서 워터캐비테이션 피닝효과에 의한 시험편 내에 압축잔류응력 형성으로 높은 경도를 나타냈으나, 물리적 충격으로 인한 산화피막 파괴로 동전위 분극 실험에서는 높은 전류밀도를 나타냈다. 따라서 해수 내 캐비테이션에 대한 저항성을 향상시키기 위해서는 전기화학적 특성뿐만 아니라 기계적 특성도 복합적으로 고려한 재료의 선택이 필요하다.

Keywords

References

  1. G. Okamoto, "Passive film of 18-8 stainless steel structure and its function," Corrosion Science, vol. 13, no. 6, pp. 471-479, 1973. https://doi.org/10.1016/0010-938X(73)90031-0
  2. T. Momma and A. Lichtarowicz, "A study of pressure and erosion produced by collapsing cavitation," Wear, vol. 186-187, pp. 425-436, 1995. https://doi.org/10.1016/0043-1648(95)07144-X
  3. M. K. Lee, S. M. Hong, G. H. Kim, and C. K. Rhee, "Investigation of the impact load and erosive pit damage on the SUS316 and 8.8Al-bronze alloys by cavitation bubble collapse," Journal of the Korean institute of metals and materials, vol. 44, no. 5, pp. 350-358, 2006.
  4. A. J. Sedriks, Corrosion of stainless steels, New York, Wiley-Interscience, 1996.
  5. D. A. Jones, Principles and Prevention of Corrosion, 2ed., Prentice Hall, 1996.
  6. I. R. Jones and D. H. Edward., "An experimental study of forces generated by the collapse of transient cavities in water," Journal of Fluid Mechanics, vol. 7, pp. 596-609, 1960. https://doi.org/10.1017/S0022112060000311
  7. A. Karabenciov, A. D. Jurchela, I. Bordeassu, M. Popoviciu, N. Biraau, and A. Lustyan, "Considerations upon the cavitation erosion resistance of stainless steel with variable chromium and nickel content," Earth and Environmental Science, vol. 12, no. 1, 012036, 2010. [Online] Available: http://iopscience.iop.org/1755-1315/12/1/012036
  8. G. Bregliozzi, A. D. Schino, S. I. U. Ahmed, J. M. Kenny, and H. Haefke, "Cavitation wear behaviour of austenitic stainless steels with different grain sizes," Wear, vol. 258, pp. 503- 510, 2005. https://doi.org/10.1016/j.wear.2004.03.024
  9. A. Al-Hashem and W. Riad, "The effect of duplex stainless steel microstructure on its cavitation morphology in seawater," Materials Characterization, vol. 47, pp. 389-395, 2001. https://doi.org/10.1016/S1044-5803(02)00186-9
  10. R. J. K. Wood and S. A. Fry, "The synergistic effect or cavitation erosion and corrosion for Copper and Cupro-Nickel in seawater," Transaction of the The American Society of Mechanical Engineers, vol. 111, pp. 271-277, 1989.
  11. M. S. Han, S. J. Lee, S. K. Jang, and S. J. Kim, "Electrochemical and cavitation characteristics of Al thermal spray coating with F-Si sealing," Corrosion Science and Technology, vol. 9, no. 6, pp. 317-324, 2010.
  12. S. J. Kim and S. J. Lee, "Investigation on electrochemical and cavitation characteristics of rudder materials for ship in sea water," Corrosion Science and Technology, vol. 10, no. 3, pp. 101-107, 2011.
  13. S. J. Kim, K. Y. Hyun, and S. K. Jang, "Effects of water cavitation peening on electrochemical characteristic by using micro-droplet cell of Al-Mg alloy," Current Applied Physics, vol. 12, pp. S24-S30, 2012.
  14. S. L. Coleman, V. D. Scott, B. McEnaney, B. Angell, and K. R. Stokes, "Comparison of tunnel and jet methods for cavitation erosion testing," Wear, vol. 184, no. 1, pp. 73-81, 1995. https://doi.org/10.1016/0043-1648(94)06563-2
  15. C. H Tang, F. T Cheng, and H. C Man, "Effect of laser surface melting on the corrosion and cavitation erosion behaviors of a manganese-nickel-aluminium bronze," Materials Science and Engineering: A, vol. 373, no. 1-2, pp. 195-203, 2004. https://doi.org/10.1016/j.msea.2004.01.016
  16. J. S. M. Rusby, "The onset of sound wave distortion and cavitation in water and sea water," Ultrasonics, vol. 9, no. 2, p. 124, 1971.
  17. Y. G. Zheng, S. Z. Luo, W. Ke, "Cavitation erosion-corrosion behaviour of CrMnB stainless overlay and Cr13Ni5Mo stainless steel in 0.5 M NaCl and 0.5 M HCl solutions," Tribology International, vol. 41, no. 12, pp. 1181-1189, 2008. https://doi.org/10.1016/j.triboint.2008.02.011
  18. Annual book of ASTM standards G32-92," U.S., 1992.
  19. Y. C. Lin and S. C. Chen, "Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment," Journal of Materials Processing Technology, vol. 138, no. 1-3, pp. 22-27, 2003. https://doi.org/10.1016/S0924-0136(03)00043-8
  20. M. G. Fontana, Corrosion Engineering, 3ed., New York, McGraw-Hill Book Company, 1986.
  21. Y. Zheng, S. Luo and W. Ke, "Effect of passivity on electrochemical corrosion behavior of alloys during cavitation in aqueous solutions," Wear, vol. 262, pp. 1308-1314, 2007. https://doi.org/10.1016/j.wear.2007.01.006
  22. P. Lacombe, B. Baroux, and G. Beranger, Stainless steels, Les Ulis, France: Les Editions de Physique, 1993.
  23. S. J. Kim and K. Y. Hyun, "Investigation on surface hardening and corrosion characteristics by water cavitation peening with time for Al 5052-O alloy," Corrosion Science and Technology, vol. 11, no. 4, pp. 151-156, 2012. https://doi.org/10.14773/cst.2012.11.4.151
  24. S. J. Lee and S. J. Kim, "Investigation on potentiostatic corrosion protection technology with cavitation condition for 5083-H116 Al alloy," Transactions of Nonferrous Metals Society of China, 2012, Submitted.
  25. Y. Yamauchi, H. Soyama, Y. Adachi, K. Sato, T. Shindo, R. Oba, R. Oshima, and M. Yanabe, "The suitable region of high-speed submerged water-jets for cutting and peening," Journal of The Japan Society of Mechanical Engineers, vol. 59, no. 557, pp. 16-22, 1993. https://doi.org/10.1299/kikaib.59.16
  26. K. Hirano, K. Enomoto, E. Hayashi, and K. Kurosawa, "Effect of water jet peening on corrosion resistance and fatigue strength of type 304 stainless steel," Journal of Journal of the Society of Materials Science, Japan, vol. 45, no. 7, pp. 740-745, 1996. https://doi.org/10.2472/jsms.45.740
  27. H. Soyama, Y. Yamauchi, T. Ikohagi, R. Oba, K. Sato, T. Shindo, and R. Oshima, "Marked peening effects by high speed submerged water jets," Journal of Jet Flow Engineering, vol. 13, no. 1, pp. 25-32, 1996.

Cited by

  1. Numerical analysis results of the cathodic protection for the underground steel pipe by anode installation method vol.38, pp.10, 2014, https://doi.org/10.5916/jkosme.2014.38.10.1212
  2. A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings vol.39, pp.8, 2015, https://doi.org/10.5916/jkosme.2015.39.8.828
  3. Cathodic Prevention and Cathodic Protection of Concrete Slab with Zinc Sacrificial Anode vol.597, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.597.341
  4. Experimental Study of Corrosion Sensors for the Design Technology of Bridge Longevity vol.597, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.597.421
  5. Cathodic Protection Effect of Reinforced Concrete Beam Specimens with Zinc Sacrificial Anode in Marine Environment vol.1125, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1125.345
  6. Utilization of Variable Resistor for Improvement of Impressed Current Cathodic Protection System on Reinforced Concrete Structures vol.1125, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1125.365
  7. Cathodic Prevention and Cathodic Protection of Zinc Mesh Sacrificial Anode for Reinforced Concrete in 15% Salt Water vol.665, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/amm.665.167
  8. 알루미늄 합금 및 스테인리스강의 해수 농도 변화에 따른 전기화학적 부식 손상 특성 vol.50, pp.4, 2013, https://doi.org/10.5695/jkise.2017.50.4.259