DOI QR코드

DOI QR Code

Antidepressant-like Effects of the Gastrodia elata Bl Extract in Mice

  • Hong, Soon-Sang (Department of Neuropsychiatry, College of Korean Medicine, Kyung-Hee University) ;
  • Cho, Seung-Hun (Department of Neuropsychiatry, College of Korean Medicine, Kyung-Hee University)
  • Received : 2013.09.02
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

Objectives : A growing body of evidence has suggested that the dysfunction of glutamatergic systems plays a pivotal role in major depressive disorder (MDD). This study was performed to investigate the antidepressant-like effects of the ethanolic extract of Gastrodia elata Bl (GE) in mouse models and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate GE's behavioral effects in mice. Additional biochemical and behavioral experiments with NBQX, an AMPA receptor antagonist, were undertaken to determine whether the antidepressant-like properties of GE are involved in AMPA receptor throughput. Results : Oral administration of GE extract (1,600 mg/kg) 1h prior to testing significantly reduced the immobility times in the FST and TST. These antidepressant-like effects of GE extract were increased dose-dependently. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the GE extract in the FST and TST. Conclusions : The ethanolic extract of GE may exert antidepressant-like effects with involvement of AMPA receptor.

Keywords

References

  1. WHO. WHO World Health Statistics. Ten Statistical Highlights in Global Public Health [Internet]. 2010 [cited 2011 3 December]. Available from: http://www.who.int/topics/depression/en/.
  2. Emslie GJ, Mayes TL, Ruberu M. Continuation and Maintenance Therapy of Early-onset Major Depressive Disorder. Paediatr Drugs. 2005;7(4): 203-17. https://doi.org/10.2165/00148581-200507040-00001
  3. Williams DR, Gonzalez HM, Neighbors H, et al. Prevalence and Distribution of Major Depressive Disorder in African Americans, Caribbean Blacks, and Non-Hispanic Whites: Results from the National Survey of American Life. Arch Gen Psychiatry. 2007;64(3):305-15. https://doi.org/10.1001/archpsyc.64.3.305
  4. Chen YW, Dilsaver SC. Lifetime Rates of Suicide Attempts among Subjects with Bipolar and Unipolar Disorders Relative to Subjects with Other Axis I Disorders. Biol Psychiatry. 1996; 39(10):896-9. https://doi.org/10.1016/0006-3223(95)00295-2
  5. Elhwuegi AS. Central Monoamines and Their Role in Major Depression. Prog Neuropsychopharmacol Biol Psychiatry. 2004;28(3):435-51. https://doi.org/10.1016/j.pnpbp.2003.11.018
  6. Fava M, Rush AJ. Current Status of Augmentation and Combination Treatments for Major Depressive Disorder: a Literature Review and a Proposal for a Novel Approach to Improve Practice. Psychother Psychosom. 2006;75(3):139-53. https://doi.org/10.1159/000091771
  7. Jick H, Kaye JA, Jick SS. Antidepressants and the Risk of Suicidal Behaviors. JAMA. 2004;292(3): 338-43. https://doi.org/10.1001/jama.292.3.338
  8. Mineur YS, Picciotto MR, Sanacora G. Antidepressant-like Effects of Ceftriaxone in Male C57BL/6J Mice. Biol Psychiatry. 2007;61(2):250-2. https://doi.org/10.1016/j.biopsych.2006.04.037
  9. Paul IA, Skolnick P. Glutamate and Depression: Clinical and Preclinical Studies. Ann N Y Acad Sci. 2003;1003:250-72. https://doi.org/10.1196/annals.1300.016
  10. Sanacora G, Rothman DL, Mason G, et al. Clinical Studies Implementing Glutamate Neurotransmission in Mood Disorders. Ann N Y Acad Sci. 2003;1003:292-308. https://doi.org/10.1196/annals.1300.018
  11. Maeng S, Zarate CA Jr. The Role of Glutamate in Mood Disorders: Results from the Ketamine in Major Depression Study and the Presumed Cellular Mechanism Underlying Its Antidepressant effects. Curr Psychiatry Rep. 2007;9(6):467-74. https://doi.org/10.1007/s11920-007-0063-1
  12. Pilc A, Chaki S, Nowak G, et al. Mood Disorders: Regulation by Metabotropic Glutamate Receptors. Biochem Pharmacol. 2008;75(5):997-1006. https://doi.org/10.1016/j.bcp.2007.09.021
  13. Pittenger C, Sanacora G, Krystal JH. The NMDA Receptor as a Therapeutic Target in Major Depressive Disorder. CNS Neurol Disord Drug Targets. 2007;6(2):101-15. https://doi.org/10.2174/187152707780363267
  14. Sanacora G, Zarate CA, Krystal JH, et al. Targeting the Glutamatergic System to Develop Novel, Improved Therapeutics for Mood Disorders. Nat Rev Drug Discov. 2008;7(5):426-37. https://doi.org/10.1038/nrd2462
  15. Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific Alterations of Gamma-aminobutyric Acid and Glutamate in Patients with Major Depression. Arch Gen Psychiatry. 2004;61(7): 705-13. https://doi.org/10.1001/archpsyc.61.7.705
  16. Auer DP, Putz B, Kraft E, et al. Reduced Glutamate in the Anterior Cingulate Cortex in Depression: an in vivo Proton Magnetic Resonance Spectroscopy Study. Biol Psychiatry. 2000;47(4): 305-13. https://doi.org/10.1016/S0006-3223(99)00159-6
  17. Mirza Y, Tang J, Russell A, et al. Reduced Anterior Cingulate Cortex Glutamatergic Concentrations in Childhood Major Depression. J Am Acad Child Adolesc Psychiatry. 2004;43(3):341-8. https://doi.org/10.1097/00004583-200403000-00017
  18. Lopes T, Neubauer P, Boje KM. Chronic Administration of NMDA Glycine Partial Agonists Induces Tolerance in the Porsolt Swim Test. Pharmacol Biochem Behav. 1997;58(4):1059-64. https://doi.org/10.1016/S0091-3057(97)00302-X
  19. Panconi E, Roux J, Altenbaumer M, et al. MK-801 and Enantiomers: Potential Antidepressants or False Positives in Classical Screening Models? Pharmacol Biochem Behav. 1993;46(1):15-20. https://doi.org/10.1016/0091-3057(93)90310-P
  20. Poleszak E. Modulation of Antidepressant-like Activity of Magnesium by Serotonergic System. J Neural Transm. 2007;114(9):1129-34. https://doi.org/10.1007/s00702-007-0714-8
  21. Przegalinski E, Tatarczynska E, Chojnacka-Wojcik E. Anxiolytic- and Antidepressant-like Effects of an Antagonist at GlycineB Receptors. Pol J Pharmacol. 1998;50(4-5):349-54.
  22. Trullas R, Skolnick P. Functional Antagonists at the NMDA Receptor Complex Exhibit Antidepressant Actions. Eur J Pharmacol. 1990;185(1):1-10. https://doi.org/10.1016/0014-2999(90)90204-J
  23. Berman RM, Cappiello A, Anand A, et al. Antidepressant Effects of Ketamine in Depressed Patients. Biol Psychiatry. 2000;47(4):351-4. https://doi.org/10.1016/S0006-3223(99)00230-9
  24. Zarate CA Jr, Singh JB, Carlson PJ, et al. A Randomized Trial of an N-methyl-D-aspartate Antagonist in Treatment-resistant Major depression. Arch Gen Psychiatry. 2006;63(8):856-64. https://doi.org/10.1001/archpsyc.63.8.856
  25. Preskorn SH, Baker B, Kolluri S, et al. An Innovative Design to Establish Proof of Concept of the Antidepressant Effects of the NR2B Subunit Selective N-methyl-D-aspartate Antagonist, CP- 101,606, in Patients with Treatment-refractory Major Depressive Disorder. J Clin Psychopharmacol. 2008;28(6):631-7. https://doi.org/10.1097/JCP.0b013e31818a6cea
  26. Bleakman D, Alt A, Witkin JM. AMPA Receptors in the Therapeutic Management of Depression. CNS Neurol Disord Drug Targets. 2007;6(2):117-26. https://doi.org/10.2174/187152707780363258
  27. Alt A, Witkin JM, Bleakman D. AMPA Receptor Potentiators as Novel Antidepressants. Curr Pharm Des. 2005;11(12):1511-27. https://doi.org/10.2174/1381612053764814
  28. Maeng S, Zarate CA Jr, Du J, et al. Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of Alpha-amino-3-hydroxy-5- methylisoxazole-4-propionic acid receptors. Biol Psychiatry. 2008;63(4):349-52. https://doi.org/10.1016/j.biopsych.2007.05.028
  29. Skolnick P. AMPA receptors: a Target for Novel Antidepressants? Biol Psychiatry. 2008;63(4):347-8. https://doi.org/10.1016/j.biopsych.2007.10.011
  30. Koike H, Iijima M, Chaki S. Involvement of AMPA Receptor in both the Rapid and Sustained Antidepressant-like Effects of Ketamine in Animal Models of Depression. Behav Brain Res. 2011; 224(1):107-11. https://doi.org/10.1016/j.bbr.2011.05.035
  31. Newman DJ, Cragg GM, Snader KM. Natural Products as Sources of New Drugs Over the Period 1981-2002. J Nat Prod. 2003;66(7):1022-37. https://doi.org/10.1021/np030096l
  32. Zhang ZJ. Therapeutic Effects of Herbal Extracts and Constituents in Animal Models of Psychiatric Disorders. Life Sci. 2004;75(14):1659-99. https://doi.org/10.1016/j.lfs.2004.04.014
  33. Kim YI, Chang KJ, Ka KH, et al. Seed Germination of Gastrodiaelata Using Symbiotic Fungi, Mycena Osmundicola. Mycobiology. 2006;34: 79-82. https://doi.org/10.4489/MYCO.2006.34.2.079
  34. Sekizaki H, Kuninaga S, Yamamoto M, et al. Identification of Armillaria Nabsnona in Gastrodia Tubers. Biol Pharm Bull. 2008;31:1410-4. https://doi.org/10.1248/bpb.31.1410
  35. Xu J, Guo S. Retrospect on the Research of the Cultivation of Gastrodia Elata Bl, a Rare Traditional Chinese medicine. Chin Med J. 2000;113:686-92.
  36. Divine Husbandman. The Divine Husband Man's Herbal Foundation Canon.
  37. Divine Husbandman. Variorum of the Divine Husband Man's Herbal Foundation Canon.
  38. Lee CJ. the Herbal Foundation Compendium; 1596.
  39. Jun H. Donguibogam; 1613.
  40. Hsieh CL, Chiang SY, Cheng KS, et al. Anticonvulsive and Free Radicalscavenging Activities of Gastrodia elata Bl. in Kainic Acid-treatedrats. Am J Chin Med. 2001;29:331-41. https://doi.org/10.1142/S0192415X01000356
  41. Hsieh CL, Chang CH, Chiang SY, et al. Anticonvulsive and Free Radicalscavenging Activities of Vanillyl Alcohol in Ferric Chloride-inducedepileptic Seizures in Sprague-Dawley Rats. Life Sci. 2000;67:1185-95. https://doi.org/10.1016/S0024-3205(00)00706-2
  42. Ha JH, Lee DU, Lee JT, et al. 4-Hydroxybenzaldehyde from Gastrodia ElataB1. is Active in the Antioxidation and GABAergic Neuromodulation of the Rat Brain. J Ethnopharmacol. 2000;73: 329-33. https://doi.org/10.1016/S0378-8741(00)00313-5
  43. An SJ, Park SK, Hwang IK, et al. Gastrodin Decreases Immunoreactivities of Gamma-aminobutyricacid Shunt Enzymes in the Hippocampus of Seizure-sensitive Gerbils. J Neurosci Res. 2003;71:534-43. https://doi.org/10.1002/jnr.10502
  44. Lee JY, Jang YW, Kang HS, et al. Anti-inflammatory Action of Phenolic Compounds from Gastrodia Elata Root. Arch Pharm Res. 2006;29: 849-58. https://doi.org/10.1007/BF02973905
  45. Liu J, Mori A. Antioxidant and Pro-oxidant Activities of p-hydroxybenzyl Alcohol and Vanillin: Effects on Free Radicals, Brain Peroxidation and Degradation of Benzoate, Deoxyribose, Amino Acids and DNA. Neuropharmacology. 1993;32: 659-69. https://doi.org/10.1016/0028-3908(93)90079-I
  46. Chen PJ, Hsieh CL, Su KP, et al. The Antidepressant Effect of Gastrodia Elata Bl. on the Forced-swimming Test in Rats. Am J Chin Med. 2008;36:95-106. https://doi.org/10.1142/S0192415X08005618
  47. Chen PJ, Hsieh CL, Su KP, et al. Rhizomes of Gastrodia elata Bl. Possess Antidepressant-like Effect via Monoamine Modulation in Subchronicanimal Model. Am J Chin Med. 2009;37:1113-24. https://doi.org/10.1142/S0192415X09007533
  48. Jung JW, Yoon BH, Oh HR, et al. Anxiolytic-like Effects of Gastrodia Elata and Itsphenolic Constituents in mice. Biol Pharm Bull. 2006;29: 261-5. https://doi.org/10.1248/bpb.29.261
  49. Shin EJ, Whang WK, Kim S, et al. Parishin C Attenuates Phencyclidine-inducedschizophrenia-like Psychosis in Mice: Involvements of 5-HT1A Receptor. J Pharmacol Sci. 2010;113:404-8. https://doi.org/10.1254/jphs.10040SC
  50. Shin EJ, Whang WK, Kim S, et al. Parishin C Attenuates Phencyclidine-induced Schizophrenia- Like Psychosis in Mice: Involvements of 5-HT1A Receptor. J Pharmacol Sci. 2010;113(4):404-8. https://doi.org/10.1254/jphs.10040SC
  51. Porsolt RD, Bertin A, Jalfre M. Behavioral Despair in Mice: a Primary Screening Test for Antidepressants. Arch Int Pharmacodyn Ther. 1977; 229(2):327-36.
  52. Porsolt RD, Le Pichon M, Jalfre M. Depression: a New Animal Model Sensitive to Antidepressant Treatments. Nature. 1977;266(5604):730-2. https://doi.org/10.1038/266730a0
  53. Steru L, Chermat R, Thierry B, et al. The Tail Suspension Test: a New Method for Screening Antidepressants in Mice. Psychopharmacology (Berl). 1985;85(3):367-70. https://doi.org/10.1007/BF00428203
  54. Borsini F, Meli A. Is the Forced Swimming Test a Suitable Model for Revealing Antidepressant Activity? Psychopharmacology (Berl). 1988;94(2): 147-60.
  55. Ma XC, Jiang D, Jiang WH, et al. Social Isolation-induced Aggression Potentiates Anxiety and Depressive-like Behavior in Male Mice Subjected to Unpredictable Chronic Mild Stress. PloS One. 2011;6(6):e20955. https://doi.org/10.1371/journal.pone.0020955
  56. Chapman AG, Smith SE, Meldrum BS. The Anticonvulsant Effect of the Non-NMDA Antagonists, NBQX and GYKI 52466, in Mice. Epilepsy Res. 1991;9(2):92-6. https://doi.org/10.1016/0920-1211(91)90018-B
  57. Gould TD, O'Donnell KC, Dow ER, et al. Involvement of AMPA Receptors in the Antidepressant-like Effects of Lithium in the Mouse Tail Suspension Test and Forced Swim test. Neuropharmacology. 2008;54(3):577-87. https://doi.org/10.1016/j.neuropharm.2007.11.002
  58. Szewczyk B, Poleszak E, Sowa-Kucma M, et al. The Involvement of NMDA and AMPA Receptors in the Mechanism of Antidepressant-like Action of Zinc in the Forced Swim Test. Amino Acids. 2010;39(1):205-17. https://doi.org/10.1007/s00726-009-0412-y
  59. Li X, Tizzano JP, Griffey K, et al. Antidepressant-like Actions of an AMPA Receptor Potentiator (LY392098). Neuropharmacology. 2001;40(8):1028-33. https://doi.org/10.1016/S0028-3908(00)00194-5
  60. Alt A, Nisenbaum ES, Bleakman D, et al. A Role for AMPA Receptors in Mood Disorders. Biochem Pharmacol. 2006;71(9):1273-88. https://doi.org/10.1016/j.bcp.2005.12.022
  61. Du J, Suzuki K, Wei Y, et al. The Anticonvulsants Lamotrigine, Riluzole, and Valproate Differentially regulate AMPA Receptor Membrane Localization: Relationship to Clinical Effects in Mood Disorders. Neuropsychopharmacology. 2007;32(4):793-802. https://doi.org/10.1038/sj.npp.1301178
  62. Li X, Witkin JM, Need AB, et al. Enhancement of Antidepressant Potency by a Potentiator of AMPA Receptors. Cell Mol Neurobiol. 2003; 23(3):419-30. https://doi.org/10.1023/A:1023648923447
  63. Martinez-Turrillas R, Frechilla D, Del Rio J. Chronic Antidepressant Treatment Increases the Membrane Expression of AMPA Receptors in Rat Hippocampus. Neuropharmacology. 2002;43(8): 1230-7. https://doi.org/10.1016/S0028-3908(02)00299-X
  64. Svenningsson P, Tzavara ET, Witkin JM, et al. Involvement of Striatal and Extrastriatal DARPP-32 in Biochemical and Behavioral Effects of Fluoxetine (Prozac). Proc Natl Acad Sci U S A. 2002;99(5):3182-7. https://doi.org/10.1073/pnas.052712799
  65. Aydemir O, Deveci A, Taneli F. The Effect of Chronic Antidepressant Treatment on Serum brain-derived Neurotrophic Factor Levels in Depressed Patients: a Preliminary Study. Prog Neuropsychopharmacol Biol Psychiatry. 2005; 29(2):261-5. https://doi.org/10.1016/j.pnpbp.2004.11.009
  66. Karege F, Perret G, Bondolfi G, et al. Decreased Serum Brain- Derived Neurotrophic Factor Levels in Major Depressed Patients. Psychiatry Res. 2002;109(2):143-8. https://doi.org/10.1016/S0165-1781(02)00005-7
  67. Dias BG, Banerjee SB, Duman RS, et al. Differential Regulation of Brain Derived Neurotrophic Factor Transcripts by Antidepressant Treatments in the Adult Rat Brain. Neuropharmacology. 2003;45(4):553-63. https://doi.org/10.1016/S0028-3908(03)00198-9
  68. Hayashi J, Sekine T, Deguchi S, et al. Phenolic Compounds from Gastrodia Rhizome and Relaxant Effects of Related Compounds on Isolated Smooth Muscle Preparation. Phytochemistry. 2002;59(5):513-9. https://doi.org/10.1016/S0031-9422(02)00008-0
  69. Kam KY, Yu SJ, Jeong N, et al. p-Hydroxybenzyl Alcohol Prevents Brain Injury and Behavioral Impairment by Activating Nrf2, PDI, and Neurotrophic Factor Genes in a Rat Model of Brain Ischemia. Mol Cells. 2011;31(3):209-15. https://doi.org/10.1007/s10059-011-0028-4
  70. Chen PJ, Hsieh CL, Su KP, et al. The Antidepressant Effect of Gastrodia Elata Bl. on the Forcedswimming Test in Rats. Am J Chin Med. 2008; 36(1):95-106. https://doi.org/10.1142/S0192415X08005618
  71. Chen PJ, Hsieh CL, Su KP, et al. Rhizomes of Gastrodia Elata B(L) Possess Antidepressant-like Effect via Monoamine modulation in Subchronic Animal Model. Am J Chin Med. 2009;37(6):1113-24. https://doi.org/10.1142/S0192415X09007533
  72. Zhou BH, Li XJ, Liu M, et al. Antidepressant-like Activity of the Gastrodia Elata Ethanol Extract in Mice. Fitoterapia. 2006;77(7-8):592-4. https://doi.org/10.1016/j.fitote.2006.06.016
  73. Chen PJ, Liang KC, Lin HC, et al. Gastrodia Elata Bl. Attenuated Learning Deficits Induced by Forced-swimming Stress in the Inhibitory Avoidance Task and Morris Water Maze. J Med Food. 2011;14(6):610-7. https://doi.org/10.1089/jmf.2010.1209
  74. Jung JW, Yoon BH, Oh HR, et al. Anxiolytic-like Effects of Gastrodia Elata and Its Phenolic Constituents in Mice. Biol Pharm Bull. 2006; 29(2):261-5. https://doi.org/10.1248/bpb.29.261
  75. Chen PJ, Sheen LY. Gastrodiae Rhizoma (tin ma): a Review of Biological Activity and Antidepressant Mechanisms. Journal of Traditional and Complementary Medicine. 2011;1(1):31-40.

Cited by

  1. Systemic Review on The Research Trend of Gastrodiae Rhizoma and Relationship Between the Herbology and KCD-code vol.31, pp.2, 2016, https://doi.org/10.6116/kjh.2016.31.2.21.