DOI QR코드

DOI QR Code

The Involvement of AMPA Receptor in the Antidepressant-like Effects of the Portulaca Oleracea L. Extract in Mice

  • Park, Soo-Jin (Department of Neuropsychiatry, College of Korean Medicine, Kyung-Hee University) ;
  • Choi, Min-Ji (Department of Neuropsychiatry, College of Korean Medicine, Kyung-Hee University) ;
  • Chung, Sun-Yong (Department of Neuropsychiatry, Hospital of Korean Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Kim, Jong-Woo (Department of Neuropsychiatry, Hospital of Korean Medicine, Kyung Hee University Hospital at Gangdong) ;
  • Cho, Seung-Hun (Department of Neuropsychiatry, Hospital of Korean Medicine, Kyung Hee University Medical Center)
  • Received : 2013.08.29
  • Accepted : 2013.09.23
  • Published : 2013.09.30

Abstract

Objectives : The development of natural drugs with antidepressant effects is important and needed. This study was performed to investigate the antidepressant-like effects of the distilled water extract of Portulaca oleracea L. (POL) in a mouse model and to investigate the role of ${\alpha}$-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors in producing these antidepressant-like effects. Methods : The forced swim test (FST) and tail suspension test (TST) were used to investigate the behavioral anti-depressive-like effects of POL in mice. Additional behavioral experiments with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, an AMPA receptor antagonist, were undertaken to determine the involvement of the antidepressant-like properties of POL in AMPA receptor throughput. Results : Oral administration of the POL extract (100 mg/kg) 1 h prior to testing significantly reduced the immobility times in the FST and TST. The antidepressant-like effects of the POL extract were not increased in a dose-dependent manner. Pre-treatment with NBQX significantly attenuated the reduction in immobility time induced by the POL extract in the FST. Conclusions : The distilled water extract of POL has antidepressant-like effects, which may be related to AMPA receptor. Pre-treatment with NBQX significantly attenuates the reduction in immobility time induced by the POL extract in the FST.

Keywords

References

  1. WHO. WHO World Health Statistics. Ten Statistical Highlights in Global Public Health; 2010.
  2. Committee of Neuropsychiatrical Textbook in National Korean Medicine. Psychiatry of Korean Medicine. Seoul, Jibmundang; 2007;256-65, 472-86, 493-502.
  3. Duman RS, Heninger GR, Nestler EJ. A Molecular and Cellular Theory of Depression. Arch Gen Psychiatry. 1997;54(7):597-606. https://doi.org/10.1001/archpsyc.1997.01830190015002
  4. Kim YG. Neurobiology of Depression. Korean Medical Association Paper. 2003;9:783-9.
  5. Butler SG, Meegan MJ. Recent Developments in the Design of Anti-depressive Therapies;targeting the Serotonin Transporter. Curr Med Chem. 2008;15(17):1737-61. https://doi.org/10.2174/092986708784872357
  6. Steru L, Chermat R, Thierry B, Simon P. The Tail Suspension Test: A New Method for Screening Antidepressants in Mice. Psychopharmacology (Berl). 1985;85(3):367-70. https://doi.org/10.1007/BF00428203
  7. Bymaster FP, McNamara RK, Tran PV. New Approachest Developing Antidepressants by Enhancing Monoaminergic Neurotransmission. Expert Opin Investig Drugs. 2003;12(4):531-43. https://doi.org/10.1517/13543784.12.4.531
  8. Segrave R, Nathan PJ. Pindolol Augmentation of Selective Serotonin Reuptake Inhibitors: Accounting for the Variability of Results of Placebo-controlled Double-blind Studies in Patients with Major Depression. Hum Psychopharmacol. 2005; 20(3):163-74. https://doi.org/10.1002/hup.672
  9. Cowen PJ. A Role for 5-HT in the Action of Antidepressant Drugs. Pharmacol Ther. 1990; 46(1):43-51. https://doi.org/10.1016/0163-7258(90)90033-X
  10. Anttila SA, Leinonen EV. A Review of the Pharmacological and Clinical Profile of Mirtazapine. CNS Drug Rev. 2001;7(3):249-64.
  11. Masand PS, Gupta S. Long-term Side Effects of Newer-generation Antidepressants: S SRIS, Venlafaxine, Nefazodone, Bupropion, and Mirtazapine. Ann Clin Psychiatry. 2002;14(3):175-82. https://doi.org/10.3109/10401230209147454
  12. Fava M, Rush AJ. Current Status of Augmentation and Combination Treatments for Major Depressive Disorder: a Literature Review and a Proposal for a Novel Approach to Improve Practice. Psychother Psychosom. 2006;75(3):139-53. https://doi.org/10.1159/000091771
  13. Pharmacology Session in the Council of Korean Pharmaceutical College: Pharmacology. Sin-il Inc.; 2005;212-27.
  14. Newman DJ, Cragg GM, Snader KM. Natural Products as Sources of New Drugs Over the Period 1981-2002. J Nat Prod. 2003;66(7): 1022-37. https://doi.org/10.1021/np030096l
  15. Zhang ZJ. Therapeutic Effects of Herbal Extracts and Constituents in Animal Models of Psychiatric Disorders. Life Sci. 2004;75(14):1659-99. https://doi.org/10.1016/j.lfs.2004.04.014
  16. Lee CH, Yoon BH, Ryu JH, Jung JW. Anxiolytic-like Effects of Portulaca Oleraceae L. Using the Elevated Plus-maze in Mice. Oriental Pharmacy and Experimental Medicine. 2009;9(2):135-41. https://doi.org/10.3742/OPEM.2009.9.2.135
  17. Sakai N, Inada K, Okamoto M, Shizuri Y, Fukuyama Y. Portuloside A, a Monoterpene Glucoside, from Portulaca Oleracea. Phytochemistry. 1996; 42:1625-8. https://doi.org/10.1016/0031-9422(96)00202-6
  18. Zhou J, Liu JW, Fu JW, et al. Isolation and Assaying of Polysaccharides in Portulaca Oleracea. Chin Tradit Herb Drug. 2001;32:124-5.
  19. Yue M-E, Jiang T-F, Shi Y-P. Simultaneous Determination of Noradrenaline and Dopamine in Portulaca Oleracea L. by Capillary Zone Electrophoresis. Journal of Separation Science. 2005;28:360-4. https://doi.org/10.1002/jssc.200400045
  20. Porsolt RD, Bertin A, Jalfre M. Behavioral Despair in Mice: a Primary Screening Test for Antidepressants. Arch Int Pharmacodyn Ther. 1977; 229(2):327-36.
  21. Le Pichon M, Porsolt RD, Jalfre M. Depression: a New Animal Model Sensitive to Antidepressant Treatments. Nature. 1977;266(5604):730-2. https://doi.org/10.1038/266730a0
  22. Jick H, Kaye JA, Jick SS. Antidepressants and the Risk of Suicidal Behaviors. JAMA. 2004;292(3): 338-43. https://doi.org/10.1001/jama.292.3.338
  23. Mineur YS, Picciotto MR, Sanacora G. Antidepressant-like Effects of Ceftriaxone in Male C57BL/6J Mice. Biol Psychiatry. 2007;61(2):250-2. https://doi.org/10.1016/j.biopsych.2006.04.037
  24. Paul IA, Skolnick P. Glutamate and Depression: Clinical and Preclinical Studies. Ann N Y Acad Sci. 2003;1003:250-72. https://doi.org/10.1196/annals.1300.016
  25. Sanacora G, Rothman DL, Mason G, Krystal JH. Clinical Studies Implementing Glutamate Neurotransmission in Mood Disorders. Ann N Y Acad Sci. 2003;1003:292-308. https://doi.org/10.1196/annals.1300.018
  26. Bleakman D, Alt A, Witkin JM. AMPA Receptors in the Therapeutic Management of Depression. CNS Neurol Disord Drug Targets. 2007;6(2):117-26. https://doi.org/10.2174/187152707780363258
  27. Alt A, Witkin JM, Bleakman D. AMPA Receptor Potentiators as Novel Antidepressants. Curr Pharm Des. 2005;11(12):1511-27. https://doi.org/10.2174/1381612053764814
  28. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, et al. Cellular Mechanisms Underlying the Antidepressant Effects of Ketamine: Role of Alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid Receptors. Biol Psychiatry. 2008;63(4):349-52. https://doi.org/10.1016/j.biopsych.2007.05.028
  29. Skolnick P. AMPA Receptors: a Target for Novel Antidepressants. Biol Psychiatry. 2008;63(4):347-8. https://doi.org/10.1016/j.biopsych.2007.10.011
  30. Koike H, Iijima M, Chaki S. Involvement of AMPA Receptor in both the Rapid and Sustained Antidepressant-like Effects of Ketamine in Animal Models of Depression. Behav Brain Res. 2011; 224(1):107-11. https://doi.org/10.1016/j.bbr.2011.05.035
  31. Chapman AG, Smith SE, Meldrum BS. The Anticonvulsant Effect of the non-NMDA Antagonists, NBQX and GYKI 52466, in mice. Epilepsy Res. 1991;9(2):92-6. https://doi.org/10.1016/0920-1211(91)90018-B
  32. Zheng ZH, Dong ZH. Yu J. Modern Study of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine. Xue Yuan Press, Beijing, China; 1997;753.
  33. Liu LX, Howe P, Zhou YF, Xu ZQ, Hocart C, Zhang R. Fatty Acids and-carotene in Australian Purslane (Portulaca Oleracea) Varieties. Journal of Chromatography A. 2000;893:207-13. https://doi.org/10.1016/S0021-9673(00)00747-0
  34. Awad NE. Lipid Content and Antimicrobial Activity of Phenolic Constituents of Cultivated Portulaca Oleracea L. Bulletin of Faculty of Pharmacy of CairoUniversity. 1994;32:137-42.
  35. Boyce P, Judd F. The Place for the Tricyclic Antidepressants in the Treatment of Depression. AustN Z J Psychiatry. 1999;33(3):323-7. https://doi.org/10.1046/j.1440-1614.1999.00580.x
  36. Zhu L, Wu XM, Yang L, Du F, Qian ZM. Up-regulation of HIF-1alpha Expression Induced by Ginkgolides in Hypoxic Neurons. Brain Research. 2007;1166:1-8. https://doi.org/10.1016/j.brainres.2007.07.003
  37. Chen CJ, Wang WY, Wang XL, Dong LW, Yue YT, Xin HL, et al. Anti-hypoxic Activity of the Ethanol Extract from Portulaca Oleracea in Mice. Journal of Ethnopharmacology. 2009;124:246-50. https://doi.org/10.1016/j.jep.2009.04.028
  38. Radhakrishnan R, Zakaria MN, Islam MW, Chen HB, Kamil M, Chan K, et al. Neuropharmacological Actions of Portulaca Oleraceae Lv. sativa (Hawk). J Ethnopharmacol. 2001;76:171-6. https://doi.org/10.1016/S0378-8741(01)00230-6
  39. Pellow S, Chopin P, File SE, Briley M. Validation of Open-closed Arm Entries in an Elevated Plus-maze as a Measure of Anxiety in the Rat. J Neurosci Methods. 1985;14:149-67. https://doi.org/10.1016/0165-0270(85)90031-7
  40. Bonetti EP, Pieri L, Cumin R, et al. Benzodiazepine Antagonist R15-1788: Neurological and Behavioral Effects. Psychopharmacology (Berl). 1982;78:8-18. https://doi.org/10.1007/BF00470579
  41. Overstreet DH, Pucilowski O, Rezvani AH, Janowsky DS. Administration of Antidepressants, Diazepam and Psychomotor Stimulants Further Confirms the Utility of Flinders Sensitive Line Rats as an Animal Model of Depression. Psychopharmacology (Berl). 1995;121(1):27-37. https://doi.org/10.1007/BF02245589
  42. Sanacora G, Treccanti G, Popolli M. Towards a Glutamate Hypothsis of Depression. An Emerging Frontier of Neuropsychopharmacology for Mood Disorders. Neuropharmacology. 2012;62:63-77. https://doi.org/10.1016/j.neuropharm.2011.07.036
  43. Li X, Tizzano JP, Griffey K, Clay M, Lindstrom T, Skolnick P. Antidepressant-like Actions of an AMPA Receptor Potentiator (LY392098). Neuropharmacology. 2001;40(8):1028-33. https://doi.org/10.1016/S0028-3908(00)00194-5
  44. Alt A, Nisenbaum ES, Bleakman D, Witkin JM. A Role for AMPA Receptors in Mood Disorders. Biochem Pharmacol. 2006;71(9):1273-88. https://doi.org/10.1016/j.bcp.2005.12.022
  45. Du J, Suzuki K, Wei Y, Wang Y, Blumenthal R, Chen Z. The Anticonvulsants Lamotrigine, Riluzole, and Valproate Differentially Regulate AMPA Receptor Membrane Localization: Relationship to Clinical Effects in Mood Disorders. Neuropsychopharmacology. 2007;32(4):793-802. https://doi.org/10.1038/sj.npp.1301178
  46. Li X, Witkin JM, Need AB, Skolnick P. Enhancement of Antidepressant Potency by a Potentiator of AMPA Receptors. Cell Mol Neurobiol. 2003; 23(3):419-30. https://doi.org/10.1023/A:1023648923447
  47. Martinez-Turrillas R, Frechilla D, Del Rio J. Chronic Antidepressant Treatment Increases the Membrane Expression of AMPA Receptors in Rat Hippocampus. Neuropharmacology. 2002;43(8): 1230-7. https://doi.org/10.1016/S0028-3908(02)00299-X
  48. Svenningsson P, Tzavara ET, Witkin JM, Fienberg AA, Nomikos GG, Greengard P. Involvement of Striatal and Extrastriatal DARPP-32 in Biochemical and Behavioral Effects of Fluoxetine (Prozac). Proc Natl Acad Sci U S A. 2002;99(5):3182-7. https://doi.org/10.1073/pnas.052712799