DOI QR코드

DOI QR Code

Adsorption Characteristics of Methylene Blue and Phenol from Aqueous Solution using Coal-based Activated Carbon

석탄계 활성탄에 의한 수중의 메틸렌블루와 페놀 흡착 특성

  • Lee, Song-Woo (Department of Chemical Engineering, Pukyong National University) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2013.03.11
  • Accepted : 2013.05.09
  • Published : 2013.09.30

Abstract

The efficiency of coal-based activated carbon in removing methylene blue (MB) and phenol from aqueous solution was investigated in batch experiments. The batch adsorption kinetics were described by applying pseudo-first-order, pseudo-second-order, and first order reversible reaction. The results showed that the adsorption of MB and phenol occurs complexed process including external mass transfer and intraparticle diffusion. The maximum adsorption capacity obtained from Langmuir isotherm was 461.0 mg/g for MB and 194.6 mg/g for phenol, respectively. The values of activation parameters such as free energy (${\Delta}G^0$), enthalpy (${\Delta}H^0$), and entropy (${\Delta}S^0$) were also determined as -19.0~-14.9 kJ/mol, 25.4 kJ/mol, and 135.2 J/mol K for MB and 51.8~54.1 kJ/mol, -29.0 kJ/mol, and -76.4 kJ/mol K for phenol, respectively. The MB adsorption was found to be endothermic and spontaneous process. However, the CV adsorption was found to be exothermic and non-spontaneous process.

Keywords

References

  1. Adak, A., Pal, A., 2006, Removal of phenol from aqueous environment by SDS modified alumina: Batch and fixed bed studies, Sep. Purif. Technol., 50, 256-262. https://doi.org/10.1016/j.seppur.2005.11.033
  2. Arana, J. M. R. R., Mazzoco, R. R., 2010, Adsorption studies of methylene blue and phenol onto black stone prepared by chemical activation, J. Hazard. Mater., 180, 656-661. https://doi.org/10.1016/j.jhazmat.2010.04.086
  3. Basar, C. A., 2006, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard. Mater. B, 135, 232-241. https://doi.org/10.1016/j.jhazmat.2005.11.055
  4. Canizares, P., Carmona, M., Baraza, O., Delgado, A., Rodrigo, M. A., 2006, Adsorption equilibrium of phenol onto chemically modified activated carbon F400, J. Hazard. Marter., B131, 243-248.
  5. Din, A. T. M., Hameed, B. H., Ahmad, A. L., 2009, Batch adsorption of phenol onto physiochemicalactivated coconut shell, J. Hazard. Mater., 161, 1522-1529. https://doi.org/10.1016/j.jhazmat.2008.05.009
  6. El-Hendawy, A. N. A., Samra, S. E., Girgis, B. S., 2001, Adsorption characteristics of activated carbons obtained from corncobs, Colloids Surf., 180, 209-221. https://doi.org/10.1016/S0927-7757(00)00682-8
  7. Gonzalez-Serrano, E., Cordero, T., Rodriguez-Mirasol, J., Cotoruelo, L., Rodriguez, J. J., 2004, Removal of water pollutants with activated carbons prepared from $H_{3}PO_{4}$ activation of lignin from kraft black liquors, Wat. Res., 38, 3043-3050. https://doi.org/10.1016/j.watres.2004.04.048
  8. Gupta, V. K., Ali, I., 2001, Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste, Wat. Res., 35, 33-40 https://doi.org/10.1016/S0043-1354(00)00232-3
  9. Hameed, B. H., Ahmad, A. L., Latiff, K. N. A., 2007, Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust, Dyes Pigm., 75, 143-149. https://doi.org/10.1016/j.dyepig.2006.05.039
  10. Hameed, B. H., Rahman, A. A., 2008, Removal of phenol from aqueous solutions by adsorption ono activated carbon prepared from biomass material, J. Hazard. Mater., 160, 576-581. https://doi.org/10.1016/j.jhazmat.2008.03.028
  11. Ho, Y. S., Mckay, G., 1999, Pseudo second order model for sorption processes, Process Biochem., 34, 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5
  12. Jeon, J. W., Yu, H. N., Kam, S. K., Lee, M. G., 2013, Removal characteristics of crystal violet and methylene blue from aqueous solution using wood-based activated carbon, J. Environ. Sci, Submitted.
  13. Juttner, K., Galla, U., Cshmieder, H., 2000, Electrochemical approaches to environmental problem in the process industry, Electrochem. Acta., 45, 2575-2594. https://doi.org/10.1016/S0013-4686(00)00339-X
  14. Kalavathy, M. H., Karthikeyan, T., Rajgopal, S., Miranda, L. R., 2005, Kinetic and isotherm studies of Cu(II) adsorption onto $H_{3}PO_{4}$-activated rubber wood sawdust, J. Colloid Inter. Sci., 292, 354-362. https://doi.org/10.1016/j.jcis.2005.05.087
  15. Kujawski, W., Warszawski, A., Ratajczak, W., Porebski, T., Capala, W., 2004, Removal of phenol from wastewater by different separation techniques, Desalination, 163, 287-296. https://doi.org/10.1016/S0011-9164(04)90202-0
  16. Kumar, K. V., Sivanesan, S., Ramamurthi, V., 2005, Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling, Process Biochem., 40, 2865-2872. https://doi.org/10.1016/j.procbio.2005.01.007
  17. Lazarova, Z., Boyadzhieva, S., 2004, Treatment of phenol-containing aqueous solutions by membranebased solvent extraction in coupled ultrafiltration modules, J. Chem. Eng., 100, 129-138. https://doi.org/10.1016/j.cej.2004.01.028
  18. Lee, M. G., Kam, S. K., Suh, K. H., 2012, Adsorption of non-degradable eosin Y by activated carbon, J. Environ. Sci., 21, 623-631.
  19. Lee, S. W., Lee, M. G., Park, S. B., 2008, Comparison of surface characteristics and adsorption characteristics of activated carbons changed by acid and base modification, J. Environ. Sci., 17, 565-571.
  20. Ofomaja, A. E., 2007, Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fibre, Chem. Eng. J., 126, 35-43. https://doi.org/10.1016/j.cej.2006.08.022
  21. Rengaraj, S., Moon, S. H., 2002, Kinetics of adsorption of Co(II) removal from water and wastewater by ion exchange resins, Wat. Res., 36, 1783-1793. https://doi.org/10.1016/S0043-1354(01)00380-3
  22. Sano, N., Yamamoto, T., Yamamoto, D., Kim, S. I., Eiad-ua, A., Shinomiya, H., Nakaiwa, M., 2007, Degradation of aqueous phenol by simultaneous use of ozone with silica-gel and zeolite, Chem. Eng. Process., 46, 513-519. https://doi.org/10.1016/j.cep.2006.07.006
  23. Suhas, P. J. M., Carrott, M. M. L., Ribeiro C., 2007, Lignin-from natural adsorbent to activated carbon: a review, Bioresour. Thechnol. 98, 2301-2312. https://doi.org/10.1016/j.biortech.2006.08.008
  24. Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., Mishra, I. M., 2006, Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics, Colloids Surf. A: Physicochem. Eng. Aspects, 214, 23-36.
  25. Tomaszewska, M., Mozia, S., Morawski, W., 2004, Removal of organic matter by coagulation enhanced with adsorption on PAC, Desalination, 162, 79-87.
  26. Vadivelan, V., Kumar, K. V., 2005, Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk, J. Colloid Interf. Sci., 286, 90-100. https://doi.org/10.1016/j.jcis.2005.01.007
  27. Yang, J., Qiu, K., 2010, Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal, Chem. Eng. J., 165, 209-217. https://doi.org/10.1016/j.cej.2010.09.019

Cited by

  1. Forms vol.22, pp.12, 2013, https://doi.org/10.5322/JESI.2013.22.12.1651