DOI QR코드

DOI QR Code

규칙 및 SVM 기반 알고리즘에 의한 심전도 신호의 리듬 분류

Rhythm Classification of ECG Signal by Rule and SVM Based Algorithm

  • 김성완 (수원과학대학교 컴퓨터정보과) ;
  • 김대환 (수원과학대학교 컴퓨터정보과)
  • Kim, Sung-Oan (Dept. of Computer Information, Suwon Science College) ;
  • Kim, Dae-Hwan (Dept. of Computer Information, Suwon Science College)
  • 투고 : 2013.07.23
  • 심사 : 2013.08.24
  • 발행 : 2013.09.30

초록

신뢰성 있는 부정맥 진단을 위해서는 리듬 구간 및 심박 단위의 종합적인 분석을 통하여 심전도 신호에 대한 분류 결과가 제시되어야 한다. 본 논문에서는 심전도 신호의 특징점에 기반하여 규칙기반 분류를 이용한 일정 구간의 리듬 분석을 수행하고 SVM기반 분류를 이용한 심박 단위의 리듬분석을 첨가하였다. 규칙기반 분류에서는 리듬 구간의 특징에 대하여 임상 자료로부터 도출된 규칙 베이스를 이용하여 리듬 유형을 분류하도록 하며, SVM기반 분류에서는 심박 단위의 특징에 대하여 미리 학습된 다중 SVM 분류기를 이용하여 단조 리듬 및 주요 비정상 심박을 분류하도록 한다. MIT-BIH 부정맥 데이터베이스를 이용한 실험을 통하여 11가지 리듬 유형에 대하여 규칙기반 방법만을 적용하였을 경우 68.52%, 규칙기반과 SVM기반의 융합 방법을 적용하였을 경우 87.04%의 분류 성능을 각각 보였다. SVM기반 방법으로 단조 리듬과 배열 리듬에 대한 오분류 개선을 통하여 분류 성능에서 19% 정도가 향상됨을 확인하였다.

Classification result by comprehensive analysis of rhythm section and heartbeat unit makes a reliable diagnosis of heart disease possible. In this paper, based on feature-points of ECG signals, rhythm analysis for constant section and heartbeat unit is conducted using rule-based classification and SVM-based classification respectively. Rhythm types are classified using a rule base deduced from clinical materials for features of rhythm section in rule-based classification, and monotonic rhythm or major abnormality heartbeats are classified using multiple SVMs trained previously for features of heartbeat unit in SVM-based classification. Experimental results for the MIT-BIH arrhythmia database show classification ratios of 68.52% by rule-based method alone and 87.04% by fusion method of rule-based and SVM-based for 11 rhythm types. The proposed fusion method is improved by about 19% through misclassification improvement for monotonic and arrangement rhythms by SVM-based method.

키워드

참고문헌

  1. Y. Han, "A Study on Monitoring of Bio-signal for U-healthcare System," Journal of the Korea Society of Computer and Information, Vol. 16, No. 3, pp. 9-15, Mar. 2011.
  2. F. Enseleit and F. Duru, "Long-term Continuous External Electrocardiographic Recording: A Review," Europace, Vol. 8, No. 4, pp. 255-266, Feb. 2006. https://doi.org/10.1093/europace/euj054
  3. D. Finlay et al., "Synthesising the 12-lead Electrocardiogram: Trends and Challenges," European Journal of Internal Medicine, Vol. 18, No. 8, pp. 566-570, Dec. 2007. https://doi.org/10.1016/j.ejim.2007.04.011
  4. D. Donoho, "De-noising by Soft-thresholding," IEEE Trans. on Information Theory, Vol. 41, No. 3, pp. 613-627, May 1995. https://doi.org/10.1109/18.382009
  5. N. Thakor and Y. Thakor, "Applications of Adaptive Filtering to ECG Analysis: Noise Cancellation and Arrhythmia Detection," IEEE Trans. on Biomedical Engineering, Vol. 38, No. 8, pp. 785-794, Aug. 1991. https://doi.org/10.1109/10.83591
  6. J. Pan and W. Tompkins, "A Real-time QRS Detection Algorithm," IEEE Trans. on Biomedical Engineering, Vol. 32, No. 3, pp. 230-236, March 1985.
  7. P. Laguna et al., "Automatic Detection of Wave Boundaries in Multilead ECG Signals: Validation with the CSE Database," Computers and Biomedical Research, Vol. 27, No. 1, pp. 45-60, Feb. 1994. https://doi.org/10.1006/cbmr.1994.1006
  8. J. Kim et al., "An R-wave Detection Method in ECG Signal Using Refractory Period," Journal of the Korea Society of Computer and Information, Vol. 18, No. 1, pp. 93-101, Jan. 2013. https://doi.org/10.9708/jksci.2013.18.1.093
  9. P. Chazal et al., "Automatic Classification of Heartbeats Using ECG Morphology and Heartbeat Interval Features," IEEE Trans. on Biomedical Engineering, Vol. 51, No. 7, pp. 1196-1206, July 2004. https://doi.org/10.1109/TBME.2004.827359
  10. Y. Hu et al., "A Patient-adaptable ECG Beat Classifier Using a Mixture of Experts Approach," IEEE Trans. on Biomedical Engineering, Vol. 44, No. 9, pp. 891-900, Sep. 1997. https://doi.org/10.1109/10.623058
  11. S. Osowski et al., "Support Vector Machine-based Expert System for Reliable Heartbeat Recognition," IEEE Trans. on Biomedical Engineering, Vol. 51, No. 4, pp. 582-589, April 2004. https://doi.org/10.1109/TBME.2004.824138
  12. T. Ince et al., "A Generic and Robust System for Automated Patient-specific Classification of ECG Signals," IEEE Trans. on Biomedical Engineering, Vol. 56, No. 5, pp. 1415-1426, May 2009. https://doi.org/10.1109/TBME.2009.2013934
  13. C. Ryu et al., "Abnormality Detection of ECG Signal by Rule-based Rhythm Classification," Journal of Korean Institute of Intelligent Systems, Vol. 22, No. 4, pp. 405-413, Aug. 2012. https://doi.org/10.5391/JKIIS.2012.22.4.405
  14. T. Kim et al., "ECG Signal Compression Using Feature Points Based on Curvature," Journal of Korean Institute of Intelligent Systems, Vol. 20, No. 5, pp. 624-630, Oct. 2010. https://doi.org/10.5391/JKIIS.2010.20.5.624
  15. S. Kim, "Arrhythmia Detection and Type Classification of ECG Signals by Rule-based Rhythm Classification," Kyungpook University, Ph. D. Dissertation, Dec. 2011.
  16. G. Moody and R. Mark, "The MIT-BIH Arrhythmia Database on CD-ROM and Software for Use with It," Computers in Cardiology, pp. 185-188, 1990
  17. M. Kundu et al., "A Knowledge-based Approach to ECG Interpretation Using Fuzzy Logic," IEEE Trans. on System, Man, and Cybernetics, Vol. 28 Part B, No. 2, pp. 237-243, April 1998. https://doi.org/10.1109/3477.662764
  18. D. Ge et al., "Cardiac Arrhythmia Classification Using Autoregressive Modeling," BioMedical Engineering Online, Vol. 1, No. 5, pp. 1-12, Nov. 2002. https://doi.org/10.1186/1475-925X-1-1
  19. J. Rodriguez et al., "Real-time Classification of ECGs on a PDA," IEEE Trans. on Information Technology in Biomedicine, Vol. 9, No. 1, pp. 23-34, March 2005. https://doi.org/10.1109/TITB.2004.838369
  20. U. Ayesta et al., "Complexity Measure Revisited: A New Algorithm for Classifying Cardiac Arrhythmias," Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 2, pp. 1589-1591, 2001.

피인용 문헌

  1. Mixture of Expert 모형에 기반한 당뇨병 진단 분류 vol.19, pp.11, 2013, https://doi.org/10.9708/jksci.2014.19.11.149