DOI QR코드

DOI QR Code

매니코어 프로세서를 이용한 SIFT 알고리즘 병렬구현 및 성능분석

Parallel Implementation and Performance Evaluation of the SIFT Algorithm Using a Many-Core Processor

  • Kim, Jae-Young (School of Electrical Engineering, University of Ulsan) ;
  • Son, Dong-Koo (School of Electrical Engineering, University of Ulsan) ;
  • Kim, Jong-Myon (School of Electrical Engineering, University of Ulsan) ;
  • Jun, Heesung (School of Electrical Engineering, University of Ulsan)
  • 투고 : 2013.03.20
  • 심사 : 2013.05.18
  • 발행 : 2013.09.30

초록

본 논문에서는 대표적인 특징점 추출 알고리즘인 SIFT(Scale-Invariant Feature Transform)를 매니코어 프로세서를 이용하여 병렬 구현하고, 이를 실행 시간, 시스템 이용률, 에너지 효율 및 시스템 면적 효율 측면에서 분석하였다. 또한 기존의 고성능 CPU와 GPU(Graphics Processing Unit)와의 성능 비교를 통해 제안하는 매니코어의 잠재가능성을 입증하였다. 모의실험 결과, 매니코어를 이용한 SIFT 알고리즘 구현 결과는 기존의 OpenCV 구현 결과와 정확도면에서 동일하였고, 매니코어 구현은 고성능 CPU 및 GPU 구현보다 실행시간 측면에서 우수하였다. 또한 본 논문에서는 SIFT알고리즘의 옥타브 크기에 따른 에너지 효율 및 시스템 면적 효율을 분석하여 최적의 모델을 제시하였다.

In this paper, we implement the SIFT(Scale-Invariant Feature Transform) algorithm for feature point extraction using a many-core processor, and analyze the performance, area efficiency, and system area efficiency of the many-core processor. In addition, we demonstrate the potential of the proposed many-core processor by comparing the performance of the many-core processor with that of high-performance CPU and GPU(Graphics Processing Unit). Experimental results indicate that the accuracy result of the SIFT algorithm using the many-core processor was same as that of OpenCV. In addition, the many-core processor outperforms CPU and GPU in terms of execution time. Moreover, this paper proposed an optimal model of the SIFT algorithm on the many-core processor by analyzing energy efficiency and area efficiency for different octave sizes.

키워드

참고문헌

  1. D.D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints." International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110, Nov. 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  2. G. Hua, Y. Fu, M. Turk, M. Pollefeys, Z. Zhang, "Introduction to the Special Issue on Mobile Vision." International Journal of Computer Vision, Vol.96, No.3, pp. 277-279, Feb. 2012. https://doi.org/10.1007/s11263-011-0506-3
  3. V. Chandrasekhar, G. Takacs, D. M. Chen, S. S. Tsai, R. Grzeszczuk, B. Griod, "CHoG: Compressed histogram of gradients A Low Bit-Rate Feature Descriptor." in IEEE Conf. on Computer Vision and Pattern Recognition, pp. 2504-2511, 2009.
  4. D. Genbrugge and L. Eeckhout, "Chip Multiprocessor Design Space Exploration through Statistical Simulation." IEEE Transactions on Computers Vol.58, No.12, pp.1668-1681, Dec. 2009. https://doi.org/10.1109/TC.2009.77
  5. A. P. Witkin, "Scale-space filtering." in International Joint Conference of Artificial Intelligence, pp. 1019-1022, 1983.
  6. B.-K. Choi, C.-H. Kim, J.-M. Kim, "Implementation of SIMD-based Many-Core Processor for Efficient Image Data Processing." Journal of The Korea Society of Computer Information, Vol. 16, No. 1, pp. 1-9, Jan. 2011 https://doi.org/10.9708/jksci.2011.16.1.001
  7. S. M. Chai, T. Taha, D. S. Wills, J. D. Meindl, "Heterogeneous architecture models for interconnect-motivated system design." IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol.8, No.6, pp. 660-670, Dec. 2000. https://doi.org/10.1109/92.902260
  8. S. Nugent, D. S. Willis, J. D. Meindl, "A hierarchical block-based modeling methodology for SoC in GENESYS." in 15th Annual IEEE International ASIC/SOC Conference, pp. 239-243, Sept. 2002.
  9. Y.-M. Kim, C.-H. Hwang, C.-H. Kim, and J.-M. Kim, "Hardware Design and Implementation of a Parallel Processor for High-Performance Multimedia Processing," Journal of The Korea Society of Computer Information, Vol. 16, No. 5, pp. 1-11, 2011. https://doi.org/10.9708/jksci.2011.16.5.001
  10. OpenCV (Open Source Computer Vision), http://opencv.org/
  11. S. Heymann K. Muller, A. Somolic, "SIFT Implementation and Optimization for General-Purpose GPU", in 15th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision, Jan. 2007.
  12. Changchang Wu, "SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT)", http://cs.unc.edu/-ccwu/siftgpu/

피인용 문헌

  1. 특이치 분해를 위한 최적의 2차원 멀티코어 시스템 탐색 vol.19, pp.9, 2013, https://doi.org/10.9708/jksci.2014.19.9.021
  2. 고속의 클러스터 추정을 위한 매니코어 프로세서의 디자인 공간 탐색 vol.19, pp.10, 2013, https://doi.org/10.9708/jksci.2014.19.10.001