Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- ABAQUS (2003), Standard user's manual, Ver. 6.1, Hibbit, Kalsson & Sorensen Inc.
- Abramovich, H., Eisenberger, M. and Shulepov, O. (1996), "Vibration and buckling of cross-ply nonsymmetric laminated composite beams", AIAA J., 34(5), 1064-1069. https://doi.org/10.2514/3.13188
- Barbero, E.J. (1999), Introduction to Composite Materials Design, Taylor & Francis.
- Bathe, K.J. (1996), Finite Element Procedures, Prentice-Hall, Englewood Cliffs, NJ, USA.
- Cortinez, V.H. and Piovan, M.T. (2006), "Stability of composite thin-walled beams with shear deformability", Comput. Struct., 84(15-16), 978-990. https://doi.org/10.1016/j.compstruc.2006.02.017
- Gunnlaugsson, G.A. and Pedersen, P.T. (1982), "A finite element formulation for beams with thin-walled cross- sections", Comput. Struct., 15(6), 691-699. https://doi.org/10.1016/S0045-7949(82)80011-4
- Kabir, M.Z. and Sherbourne, A.N. (1998), "Optimal fibre orientation in lateral stability of laminated channel section beams", Compos. Part B, 29(1), 81-87. https://doi.org/10.1016/S1359-8368(97)00022-X
- Kim, M.Y., Chang, S.P. and Kim, S.B. (1994), "Spatial stability and free vibration of shear flexible thin-walled elastic beams", Int. J. Numer. Meth. Eng. 37(23), 4117-4140. https://doi.org/10.1002/nme.1620372311
- Kim, N.I., Shin, D.K. and Kim, M.Y. (2007), "Improved flexural-torsional stability analysis of thin-walled composite beam and exact stiffness matrix", Sci. 49(8), 950-969.
- Kollar, L.P. and Springer, G.S. (2003), Mechanics of Composite Structures, Cambridge University Press.
- Lee, J.H. (2006), "Lateral buckling analysis of thin-walled laminated composite beams with monosymmetric sections", Eng. Struct., 28(14), 1997-2009. https://doi.org/10.1016/j.engstruct.2006.03.024
- Lee, J., Kim, S.E. and Hong, K. (2002), "Lateral buckling of I-section composite beams", Eng. Struct., 24(7), 955-964. https://doi.org/10.1016/S0141-0296(02)00016-0
- Lin, Z.M., Polyzois, D. and Shah, A. (1996), "Stability of thin-walled pultruded structural members by the finite element method", Thin-Walled Struct., 24(1), 1-18. https://doi.org/10.1016/0263-8231(95)00034-8
- Machado, S.P. and Cortinez, V.H. (2005), "Non-linear model for stability of thin-walled composite beams with shear deformation", Thin-Walled Struct., 43(10), 1615-1645. https://doi.org/10.1016/j.tws.2005.06.008
- Mathematica (2009), Wolfram Mathematica 7, Wolfram Research Inc., IL, USA.
- Piovan, M.T., Filipich, C.P. and Cortinez, V.H. (2008), "Exact solutions for coupled free vibrations of tapered shear-flexible thin-walled composite beams", J. Sound Vib., 316(1-5), 298-316. https://doi.org/10.1016/j.jsv.2008.02.044
- Qiao, P., Zou, G. and Davalos, J.F. (2003), "Flexural-torsional buckling of fiber-reinforced plastic composite cantilever I-beams", Compos. Struct., 60(2), 205-217. https://doi.org/10.1016/S0263-8223(02)00304-5
- Sapkas, A. and Kollar, L.P. (2002), "Lateral-torsional buckling of composite beams", Int. J. Solids Struct., 39(11), 2939-2963. https://doi.org/10.1016/S0020-7683(02)00236-6
- Shield, C.K. and Morey, T.A. (1997), "Kinematic theory for buckling of open and closed section thin-walled composite beams", J. Eng. Mech., 123(10), 1070-1081. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:10(1070)
- Smith, E.C. and Chopra, I. (1991), "Formulation and evaluation of an analytical model for composite box beams", J. Am. Helicopter Soc., 36(3), 23-35. https://doi.org/10.4050/JAHS.36.23
- Wendroff, B. (1966), Theoretical Numerical Analysis, Academic Press, NY, USA.
- Zhen, W. and Wanji, C. (2008), "An assessment of several displacement-based theories for the vibration and stability analysis of laminated composite and sandwich beams", Compos. Struct., 84(4), 337-349. https://doi.org/10.1016/j.compstruct.2007.10.005
Cited by
- Free vibration analysis of laminated composite beam under room and high temperatures vol.51, pp.1, 2014, https://doi.org/10.12989/sem.2014.51.1.111
- Hygro-thermo-mechanical buckling of laminated beam using hyperbolic refined shear deformation theory vol.252, pp.None, 2020, https://doi.org/10.1016/j.compstruct.2020.112689