Acknowledgement
Supported by : National Science Council
References
- Ali, F. and O'Connor, D. (2001), "Structural performance of rotationally restrained steel columns in fire", Fire Safety J., 36(7), 679-691. https://doi.org/10.1016/S0379-7112(01)00017-0
- BS 476-20 (1987), Fire tests on building materials and structures-part 20: Methods for determination of the fire resistance of elements of construction (general principles).
- Correia, A.J.P.M. and Rodrigues, J.P.C. (2012), Fire resistance of steel columns with restrained thermal elongation, Fire Safety J., 50, 1-11. https://doi.org/10.1016/j.firesaf.2011.12.010
- Design Specifications for Steel Structures: LSD (1999), Construction and Planning Agency, Ministry of the Interior. [In Chinese]
- Franssen, J.M. (2000), "Failure temperature of a system comprising a restrained column submitted to fire, Fire Safety J., 34(2), 191-207. https://doi.org/10.1016/S0379-7112(99)00047-8
- Fujimoto, M., Furumura, F. and Ave, T. (1981), Primary creep of structural steel (SM 50A) at high temperatures, J. Struct. Const. Eng., 26(306), 145-157.
- Furumura, F., Ave, T. and Kim, W.J. (1986), "Creep buckling of steel columns at high temperatures part II Creep buckling tests and numerical analysis", J. Struct. Const. Eng., 361, 142-151.
- Huang, Z.F., Tan, K.H. and Ting, S.K. (2006), "Heating rate and boundary restraint effects on fire resistance of steel columns with creep", Eng. Struct., 28(6), 805-817. https://doi.org/10.1016/j.engstruct.2005.10.009
- Li, G.Q. and Zhang, C. (2012), "Creep effect on buckling of axially restrained steel columns in real fires", J. Construct. Steel Res., 71, 182-188. https://doi.org/10.1016/j.jcsr.2011.09.006
- Li, G.Q., Wang, P.J. and Hou, H.T. (2009), "Post-buckling behaviours of axially restrained steel columns in fire", Steel Compos. Struct., Int. J., 9(2), 89-101. https://doi.org/10.12989/scs.2009.9.2.089
- Neves, I.C., Valente, J.C., Rodrigues, J.P.C. (2002), "Thermal restraint and fire resistance of columns", Fire Safety J., 37(8), 753-771. https://doi.org/10.1016/S0379-7112(02)00029-2
- Sakumoto, Y., Yamaguchi, T., Okada, T., Yoshida, M., Tasaka, S. and Saito, H. (1994), Fire resistance of Fire-resistant steel columns, J. Struct. Div. ASCE, 120(4), 1103-1121. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:4(1103)
- Skowronski, W. (1993), "Buckling fire endurance of steel columns", J. Struct. Eng., 119(6), 1712-1732. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1712)
- Tan, K.H., Toh, W.S., Huang, Z.F. and Phng, G.H. (2007), "Structural responses of restrained steel columns at elevated temperatures. Part 1: Experiments", Eng. Struct., 29(8), 1641-1652. https://doi.org/10.1016/j.engstruct.2006.12.005
- Valente, J.C. and Neves, I.C. (1999), "Fire resistance of steel columns with elastically restrained axial elongation and bending", J. Constr. Steel Res., 52(3), 319-331. https://doi.org/10.1016/S0143-974X(99)00033-4
- Wang, Y.C. and Davies, J.M. (2003), "An experimental study of non-sway loaded and rotationally restrained steel column assembles under fire conditions: Analysis of test results and design calculations", J. Construct. Steel Res., 59(3), 291-313. https://doi.org/10.1016/S0143-974X(02)00040-8
- Wong, M.B. (2005), "Modeling of axial restraints for limiting temperature calculation of steel members in fire", J. Construct. Steel Res., 61(5), 675-687. https://doi.org/10.1016/j.jcsr.2004.10.003
- Yang, K.C., Lee, H.H. and Chan, O. (2006), "Experimental study on Fire-resistant steel H columns subjected to fire load", J. Construct. Steel Res., 62(6), 544-553. https://doi.org/10.1016/j.jcsr.2005.09.008
- Zeng, J.L., Tan, K.H. and Huang, Z.F. (2003), "Primary creep bucking of steel columns in fire", J. Construct. Steel Res., 59(8), 951-970. https://doi.org/10.1016/S0143-974X(03)00027-0
Cited by
- Fire performance curves for unprotected HSS steel columns vol.15, pp.6, 2013, https://doi.org/10.12989/scs.2013.15.6.705
- Fire performance of restrained welded steel box columns vol.107, 2015, https://doi.org/10.1016/j.jcsr.2015.01.019
- Predicting the viscosity of solids using steady-state creep behavior of the fibrous composites semi-theoretically vol.7, 2017, https://doi.org/10.1016/j.rinp.2017.03.031
- Experimental Study on the Fire Performance of Tubular Steel Columns with Membrane Protections for Prefabricated and Modular Steel Construction vol.11, pp.3, 2018, https://doi.org/10.3390/ma11030437
- Effect of creep on behaviour of steel structural assemblies in fires vol.29, pp.4, 2013, https://doi.org/10.12989/scs.2018.29.4.423
- Interactive Buckling of Steel LC-Beams Under Bending vol.12, pp.9, 2019, https://doi.org/10.3390/ma12091440
- Numerical Studies on the Creep Behavior of Shear Endplate Connection Assemblies UNDER Transient Heating vol.55, pp.6, 2013, https://doi.org/10.1007/s10694-019-00869-x
- Creep Property of TMCP High-Strength Steel Q690CFD at Elevated Temperatures vol.32, pp.2, 2020, https://doi.org/10.1061/(asce)mt.1943-5533.0003040
- Mechanical properties and modelling of superior high-performance steel at elevated temperatures vol.176, pp.None, 2013, https://doi.org/10.1016/j.jcsr.2020.106407
- The fire-risks of cost-optimized steel structures: Fire-resistant and hot-rolled carbon steel vol.78, pp.1, 2021, https://doi.org/10.12989/sem.2021.78.1.067