References
- Abdollahzade, G.R., Bayat, M., Shahidi, M., Domairry, G. and Rostamian, M. (2010), "Analysis of dynamic model of a structure with nonlinear damped behavior", Int. J. Eng. Tech., 2(2), 160-168.
- Amiro, I.Y., Zarutsky, V.A. (1981), "Studies of the dynamics of ribbed shells", Soviet. Appl. Mech., 17(11), 949-962. https://doi.org/10.1007/BF00883991
- Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mech. Thin-Walled Struct., Springer - Verlag Berlin Heidelberg, Germany.
- Bayat, M., Pakar, I. and Domaiirry, G. (2012a), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solids Struct., 9(2), 145-234.
- Bayat, M. and Pakar, I. (2011a), "Application of He's Energy Balance Method for Nonlinear vibration of thin circular sector cylinder", Int. J. Phys. Sci., 6(23), 5564-5570.
- Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I. and Bayat, M. (2011b), "Analytical study on the vibration frequencies of tapered beams", Latin Am. J. Solids Struct., 8(2), 149-162. https://doi.org/10.1590/S1679-78252011000200003
- Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., Int. J., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Bayat, M., Pakar, I, and Bayat, M. (2013b), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., Int. J., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
- Bayat, M. and Pakar, I. (2011c), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vibroeng., 13(4), 654-661.
- Bayat, M., Shahidi, M. and Bayat, M. (2011d), "Application of iteration perturbation method for nonlinear oscillators with discontinuities", Int. J. Phys. Sci., 6(15), 3608-3612.
- Cummings, B.E. (1964), "Large-amplitude vibration and response of curved panels", AIAA J., 2(4), 709-16. https://doi.org/10.2514/3.2392
- Chia, C.Y. (1987), "Nonlinear vibration and postbuckling of unsymmetrically laminated imperfect shallow cylindrical panels with mixed boundary conditions resting on elastic foundation", Int. J. Eng. Sci., 25(4), 427-441. https://doi.org/10.1016/0020-7225(87)90069-3
- Evakin A. Yu. and Kalamkarov, A. (2001), "Analysis of large deflection equilibrium state of composite shells of revolution - Part 1. General model and singular perturbation analysis", Int. J. Solids Struct., 38(50-51), 8961-8974. https://doi.org/10.1016/S0020-7683(01)00184-6
- Fu, Y.M. and Chia, C.Y. (1989), "Multi-mode non-linear vibration and postbuckling of anti-symmetric imperfect angle-ply cylindrical thick panels", Int. J. Non-linear Mech., 24(5), 365-381. https://doi.org/10.1016/0020-7462(89)90025-5
- Fu, Y.M. and Chia, C.Y. (1993), "Non-linear vibration and postbuckling of generally laminated circular cylindrical thick shells with non-uniform boundary conditions", Int. J. Non-linear Mech., 28(3), 313-327. https://doi.org/10.1016/0020-7462(93)90038-M
- Filippov, S.B. (1999), "Theory of conjugated and reinforced shells", St. Petersburg State University, St. Petersburg, Russia. (In Russian)
- Ganji, DD. (2006), "The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer," Physics Letters A, 355(4-5), 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
- Ganji, D.D., Rafei, M., Sadighi, A. and Ganji, Z.Z. (2009), "A comparative comparison of He's Method with perturbation and numerical methods for nonlinear vibrations equations", Int. J. Nonlinear Dyn. in Eng. Sci., 1(1), 1-20.
- Grigolyuk, E.I. and Kabanov, V.V. (1987), "Stability of shells", Nauka, Moscow. (In Russian)
- Han, S. (1965), "On the free vibration of a beams on a nonlinear elastic foundation", Trans. ASME J. Appl. Mech., 32(2), 445-447. https://doi.org/10.1115/1.3625828
- He, J.H. (1999), "Variational iteration method: A kind of nonlinear analytical technique: some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Letters A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos. Soliton. Fractals., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Comm., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- Hui, D. (1984), "Influence of geometric imperfections and in-plane constraints on nonlinear vibrations of simply supported cylindrical panels", J. Appl. Mech., 51(2), 383-390. https://doi.org/10.1115/1.3167629
- Kapania, R.K. and Byum, C. (1992), "Vibrations of imperfect laminated panels under complex preloads", Int. J. Non-linear Mech., 27(1), 51-62, https://doi.org/10.1016/0020-7462(92)90022-Y
- Koiter, W.T. (1966), "On the nonlinear theory of thin elastic shells", Proceedings of Kon. Ned. Ak. Wet., Series B, 69(1), 1-54.
- Liu, J.F. (2009), "He's variational approach for nonlinear oscillators with high nonlinearity", Comp. Math. Appl., 58(11-12), 2423-2426. https://doi.org/10.1016/j.camwa.2009.03.074
- Leissa, A.W. and Kadi, A.S. (1971), "Curvature effects on shallow shell vibrations", J. Sound Vib., 16(2), 173-187. https://doi.org/10.1016/0022-460X(71)90482-2
- Manevitch, A.I. (1972), "Stability and optimal design of reinforced shells", Visha Shkola, Kiev-Donetzk. (In Russian)
- Pakar, I., Bayat, M. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
- Pakar, I., Bayat, M. and Bayat, M. (2011b), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phys. Sci., 6(30), 6861-6866.
- Pakar, I. and Bayat, M. (2012a), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
- Pakar, I. and Bayat, M. (2013b), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli Beams", Acta Phys. Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Pakar, I. and Bayat, M. (2013a) "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., Int. J., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
- Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using Energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
- Raouf, R.A. and Palazotto, A.N. (1991), "Non-linear dynamic response of anisotropic, arbitrarily laminated shell panels: An asymptotic analysis", Compos. Struct., 18(2), 63-192.
- Raouf, R.A. and Palazotto, A.N. (1992), "Non-linear free vibrations of symmetrically laminated, slightly compressible cylindrical shell panels", Compos. Struct., 20(4), 249-257. https://doi.org/10.1016/0263-8223(92)90030-G
- Reddy, J.N. and Chandrashekhara, K. (1985), "Geometrically non-linear transient analysis of laminated, doubly curved shells", Int. J. Non-linear Mech., 20(2), 79-90. https://doi.org/10.1016/0020-7462(85)90002-2
- Sinharay, G.C. and Bane, B. (1985), "Large amplitude free vibrations of shallow spherical shell and cylindrical shell - A new approach", Int. J. Non-linear Mech., 20(2), 69-78. https://doi.org/10.1016/0020-7462(85)90001-0
- Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "On the solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7), 1628-1634.
- Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11-12), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
- Wang, S.Q. (2009), "A variational approach to nonlinear two-point boundary value problems", Comput. Math. Appl., 58(11-12), 2452-2245. https://doi.org/10.1016/j.camwa.2009.03.050
- Xu, L. and He, J.H. (2010), "Determination of limit cycle by Hamiltonian Approach for strongly nonlinear oscillators", Int. J. Nonlinear Sci., 11(12), 1097-1101.
- Zarutsky, V.A. (1993), "Oscillations of ribbed shells", Int. Appl. J. Mech., 29(10), 837-841. https://doi.org/10.1007/BF00855264
Cited by
- Nonlinear vibration of an electrostatically actuated microbeam vol.11, pp.3, 2014, https://doi.org/10.1590/S1679-78252014000300009
- An accurate novel method for solving nonlinear mechanical systems vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.519
- Accurate periodic solution for non-linear vibration of dynamical equations vol.7, pp.1, 2014, https://doi.org/10.12989/eas.2014.7.1.001
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Accurate periodic solution for nonlinear vibration of thick circular sector slab vol.16, pp.5, 2014, https://doi.org/10.12989/scs.2014.16.5.521
- Mathematical solution for nonlinear vibration equations using variational approach vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1311
- Nonstationary Deformation of Longitudinally and Transversely Reinforced Cylindrical Shells on an Elastic Foundation vol.52, pp.1, 2016, https://doi.org/10.1007/s10778-016-0733-y
- Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.439
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Nonlinear vibration of thin circular sector cylinder: An analytical approach vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.133
- Nonlinear vibration of stringer shell by means of extended Hamiltonian approach vol.84, pp.1, 2014, https://doi.org/10.1007/s00419-013-0781-2
- Nonstationary Vibrations of Transversely Reinforced Elliptic Cylindrical Shells on an Elastic Foundation vol.52, pp.6, 2016, https://doi.org/10.1007/s10778-016-0785-z
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- Forced nonlinear vibration by means of two approximate analytical solutions vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.853
- Accurate analytical solutions for nonlinear oscillators with discontinuous vol.51, pp.2, 2014, https://doi.org/10.12989/sem.2014.51.2.349
- Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
- Approximate solutions to nonlinear oscillations via an improved He's variational approach vol.2, pp.4, 2016, https://doi.org/10.1016/j.kijoms.2016.11.003
- The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.123
- Approximate analytical solution of nonlinear systems using homotopy perturbation method vol.230, pp.1, 2016, https://doi.org/10.1177/0954408914533104
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Nonlinear vibration of stringer shell: An analytical approach vol.229, pp.1, 2015, https://doi.org/10.1177/0954408913509090
- Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2013, https://doi.org/10.12989/sem.2017.61.5.657
- Analysis of Large-Amplitude Oscillations in Triple-Well Non-Natural Systems vol.14, pp.9, 2013, https://doi.org/10.1115/1.4043833
- Stability and Approximate Analytical Periodic Solution of a Structurally Orthotropic Stringer Shell vol.8, pp.3, 2013, https://doi.org/10.4236/jamp.2020.83038
- Global Dynamics of a Class of Quintic Nonlinear System vol.9, pp.4, 2020, https://doi.org/10.12677/dsc.2020.94020