DOI QR코드

DOI QR Code

Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell

  • Bayat, Mahmoud (Young Researchers and Elites club, Science and Research Branch, Islamic Azad University) ;
  • Pakar, Iman (Department of Civil Engineering, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Department of Civil Engineering, Mashhad Branch, Islamic Azad University)
  • Received : 2013.02.01
  • Accepted : 2013.05.22
  • Published : 2013.05.25

Abstract

In this study we have considered the governing nonlinear equation of an eccentrically reinforced cylindrical shell. A new analytical method called He's Variational Approach (VA) is used to obtain the natural frequency of the nonlinear equation. This analytical representation gives excellent approximations to the numerical solution for the whole range of the oscillation amplitude, reducing the respective error of angular frequency in comparison with the variation approach method. It has been proved that the variational approach is very effective, convenient and does not require any linearization or small perturbation. Additionally it has been demonstrated that the variational approach is adequately accurate to nonlinear problems in physics and engineering.

Keywords

References

  1. Abdollahzade, G.R., Bayat, M., Shahidi, M., Domairry, G. and Rostamian, M. (2010), "Analysis of dynamic model of a structure with nonlinear damped behavior", Int. J. Eng. Tech., 2(2), 160-168.
  2. Amiro, I.Y., Zarutsky, V.A. (1981), "Studies of the dynamics of ribbed shells", Soviet. Appl. Mech., 17(11), 949-962. https://doi.org/10.1007/BF00883991
  3. Andrianov, I.V., Awrejcewicz, J. and Manevitch, L.I. (2004), Asymptotical Mech. Thin-Walled Struct., Springer - Verlag Berlin Heidelberg, Germany.
  4. Bayat, M., Pakar, I. and Domaiirry, G. (2012a), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: A review", Latin Am. J. Solids Struct., 9(2), 145-234.
  5. Bayat, M. and Pakar, I. (2011a), "Application of He's Energy Balance Method for Nonlinear vibration of thin circular sector cylinder", Int. J. Phys. Sci., 6(23), 5564-5570.
  6. Bayat, M. and Pakar, I. (2013a), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  7. Bayat, M., Pakar, I. and Bayat, M. (2011b), "Analytical study on the vibration frequencies of tapered beams", Latin Am. J. Solids Struct., 8(2), 149-162. https://doi.org/10.1590/S1679-78252011000200003
  8. Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  9. Bayat, M. and Pakar, I. (2012), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., Int. J., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  10. Bayat, M., Pakar, I, and Bayat, M. (2013b), "On the large amplitude free vibrations of axially loaded Euler-Bernoulli beams", Steel Compos. Struct., Int. J., 14(1), 73-83. https://doi.org/10.12989/scs.2013.14.1.073
  11. Bayat, M. and Pakar, I. (2011c), "Nonlinear free vibration analysis of tapered beams by Hamiltonian approach", J. Vibroeng., 13(4), 654-661.
  12. Bayat, M., Shahidi, M. and Bayat, M. (2011d), "Application of iteration perturbation method for nonlinear oscillators with discontinuities", Int. J. Phys. Sci., 6(15), 3608-3612.
  13. Cummings, B.E. (1964), "Large-amplitude vibration and response of curved panels", AIAA J., 2(4), 709-16. https://doi.org/10.2514/3.2392
  14. Chia, C.Y. (1987), "Nonlinear vibration and postbuckling of unsymmetrically laminated imperfect shallow cylindrical panels with mixed boundary conditions resting on elastic foundation", Int. J. Eng. Sci., 25(4), 427-441. https://doi.org/10.1016/0020-7225(87)90069-3
  15. Evakin A. Yu. and Kalamkarov, A. (2001), "Analysis of large deflection equilibrium state of composite shells of revolution - Part 1. General model and singular perturbation analysis", Int. J. Solids Struct., 38(50-51), 8961-8974. https://doi.org/10.1016/S0020-7683(01)00184-6
  16. Fu, Y.M. and Chia, C.Y. (1989), "Multi-mode non-linear vibration and postbuckling of anti-symmetric imperfect angle-ply cylindrical thick panels", Int. J. Non-linear Mech., 24(5), 365-381. https://doi.org/10.1016/0020-7462(89)90025-5
  17. Fu, Y.M. and Chia, C.Y. (1993), "Non-linear vibration and postbuckling of generally laminated circular cylindrical thick shells with non-uniform boundary conditions", Int. J. Non-linear Mech., 28(3), 313-327. https://doi.org/10.1016/0020-7462(93)90038-M
  18. Filippov, S.B. (1999), "Theory of conjugated and reinforced shells", St. Petersburg State University, St. Petersburg, Russia. (In Russian)
  19. Ganji, DD. (2006), "The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer," Physics Letters A, 355(4-5), 337-341. https://doi.org/10.1016/j.physleta.2006.02.056
  20. Ganji, D.D., Rafei, M., Sadighi, A. and Ganji, Z.Z. (2009), "A comparative comparison of He's Method with perturbation and numerical methods for nonlinear vibrations equations", Int. J. Nonlinear Dyn. in Eng. Sci., 1(1), 1-20.
  21. Grigolyuk, E.I. and Kabanov, V.V. (1987), "Stability of shells", Nauka, Moscow. (In Russian)
  22. Han, S. (1965), "On the free vibration of a beams on a nonlinear elastic foundation", Trans. ASME J. Appl. Mech., 32(2), 445-447. https://doi.org/10.1115/1.3625828
  23. He, J.H. (1999), "Variational iteration method: A kind of nonlinear analytical technique: some examples", Int. J. Non-Linear Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  24. He, J.H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Letters A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  25. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos. Soliton. Fractals., 34(5), 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  26. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Comm., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  27. Hui, D. (1984), "Influence of geometric imperfections and in-plane constraints on nonlinear vibrations of simply supported cylindrical panels", J. Appl. Mech., 51(2), 383-390. https://doi.org/10.1115/1.3167629
  28. Kapania, R.K. and Byum, C. (1992), "Vibrations of imperfect laminated panels under complex preloads", Int. J. Non-linear Mech., 27(1), 51-62, https://doi.org/10.1016/0020-7462(92)90022-Y
  29. Koiter, W.T. (1966), "On the nonlinear theory of thin elastic shells", Proceedings of Kon. Ned. Ak. Wet., Series B, 69(1), 1-54.
  30. Liu, J.F. (2009), "He's variational approach for nonlinear oscillators with high nonlinearity", Comp. Math. Appl., 58(11-12), 2423-2426. https://doi.org/10.1016/j.camwa.2009.03.074
  31. Leissa, A.W. and Kadi, A.S. (1971), "Curvature effects on shallow shell vibrations", J. Sound Vib., 16(2), 173-187. https://doi.org/10.1016/0022-460X(71)90482-2
  32. Manevitch, A.I. (1972), "Stability and optimal design of reinforced shells", Visha Shkola, Kiev-Donetzk. (In Russian)
  33. Pakar, I., Bayat, M. and Bayat, M. (2012b), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vibroeng., 14(1), 423-429.
  34. Pakar, I., Bayat, M. and Bayat, M. (2011b), "Analytical evaluation of the nonlinear vibration of a solid circular sector object", Int. J. Phys. Sci., 6(30), 6861-6866.
  35. Pakar, I. and Bayat, M. (2012a), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vibroeng., 14(1), 216-224.
  36. Pakar, I. and Bayat, M. (2013b), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli Beams", Acta Phys. Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  37. Pakar, I. and Bayat, M. (2013a) "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., Int. J., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  38. Pakar, I. and Bayat, M. (2011a), "Analytical solution for strongly nonlinear oscillation systems using Energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
  39. Raouf, R.A. and Palazotto, A.N. (1991), "Non-linear dynamic response of anisotropic, arbitrarily laminated shell panels: An asymptotic analysis", Compos. Struct., 18(2), 63-192.
  40. Raouf, R.A. and Palazotto, A.N. (1992), "Non-linear free vibrations of symmetrically laminated, slightly compressible cylindrical shell panels", Compos. Struct., 20(4), 249-257. https://doi.org/10.1016/0263-8223(92)90030-G
  41. Reddy, J.N. and Chandrashekhara, K. (1985), "Geometrically non-linear transient analysis of laminated, doubly curved shells", Int. J. Non-linear Mech., 20(2), 79-90. https://doi.org/10.1016/0020-7462(85)90002-2
  42. Sinharay, G.C. and Bane, B. (1985), "Large amplitude free vibrations of shallow spherical shell and cylindrical shell - A new approach", Int. J. Non-linear Mech., 20(2), 69-78. https://doi.org/10.1016/0020-7462(85)90001-0
  43. Shahidi, M., Bayat, M., Pakar, I. and Abdollahzadeh, G.R. (2011), "On the solution of free non-linear vibration of beams", Int. J. Phys. Sci., 6(7), 1628-1634.
  44. Shen, Y.Y. and Mo, L.F. (2009), "The max-min approach to a relativistic equation", Comput. Math. Appl., 58(11-12), 2131-2133. https://doi.org/10.1016/j.camwa.2009.03.056
  45. Wang, S.Q. (2009), "A variational approach to nonlinear two-point boundary value problems", Comput. Math. Appl., 58(11-12), 2452-2245. https://doi.org/10.1016/j.camwa.2009.03.050
  46. Xu, L. and He, J.H. (2010), "Determination of limit cycle by Hamiltonian Approach for strongly nonlinear oscillators", Int. J. Nonlinear Sci., 11(12), 1097-1101.
  47. Zarutsky, V.A. (1993), "Oscillations of ribbed shells", Int. Appl. J. Mech., 29(10), 837-841. https://doi.org/10.1007/BF00855264

Cited by

  1. Nonlinear vibration of an electrostatically actuated microbeam vol.11, pp.3, 2014, https://doi.org/10.1590/S1679-78252014000300009
  2. An accurate novel method for solving nonlinear mechanical systems vol.51, pp.3, 2014, https://doi.org/10.12989/sem.2014.51.3.519
  3. Accurate periodic solution for non-linear vibration of dynamical equations vol.7, pp.1, 2014, https://doi.org/10.12989/eas.2014.7.1.001
  4. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  5. Accurate periodic solution for nonlinear vibration of thick circular sector slab vol.16, pp.5, 2014, https://doi.org/10.12989/scs.2014.16.5.521
  6. Mathematical solution for nonlinear vibration equations using variational approach vol.15, pp.5, 2015, https://doi.org/10.12989/sss.2015.15.5.1311
  7. Nonstationary Deformation of Longitudinally and Transversely Reinforced Cylindrical Shells on an Elastic Foundation vol.52, pp.1, 2016, https://doi.org/10.1007/s10778-016-0733-y
  8. Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation vol.15, pp.4, 2013, https://doi.org/10.12989/scs.2013.15.4.439
  9. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  10. Nonlinear vibration of thin circular sector cylinder: An analytical approach vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.133
  11. Nonlinear vibration of stringer shell by means of extended Hamiltonian approach vol.84, pp.1, 2014, https://doi.org/10.1007/s00419-013-0781-2
  12. Nonstationary Vibrations of Transversely Reinforced Elliptic Cylindrical Shells on an Elastic Foundation vol.52, pp.6, 2016, https://doi.org/10.1007/s10778-016-0785-z
  13. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  14. Forced nonlinear vibration by means of two approximate analytical solutions vol.50, pp.6, 2014, https://doi.org/10.12989/sem.2014.50.6.853
  15. Accurate analytical solutions for nonlinear oscillators with discontinuous vol.51, pp.2, 2014, https://doi.org/10.12989/sem.2014.51.2.349
  16. Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
  17. Approximate solutions to nonlinear oscillations via an improved He's variational approach vol.2, pp.4, 2016, https://doi.org/10.1016/j.kijoms.2016.11.003
  18. The analytic solution for parametrically excited oscillators of complex variable in nonlinear dynamic systems under harmonic loading vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.123
  19. Approximate analytical solution of nonlinear systems using homotopy perturbation method vol.230, pp.1, 2016, https://doi.org/10.1177/0954408914533104
  20. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  21. Nonlinear vibration of stringer shell: An analytical approach vol.229, pp.1, 2015, https://doi.org/10.1177/0954408913509090
  22. Accurate semi-analytical solution for nonlinear vibration of conservative mechanical problems vol.61, pp.5, 2013, https://doi.org/10.12989/sem.2017.61.5.657
  23. Analysis of Large-Amplitude Oscillations in Triple-Well Non-Natural Systems vol.14, pp.9, 2013, https://doi.org/10.1115/1.4043833
  24. Stability and Approximate Analytical Periodic Solution of a Structurally Orthotropic Stringer Shell vol.8, pp.3, 2013, https://doi.org/10.4236/jamp.2020.83038
  25. Global Dynamics of a Class of Quintic Nonlinear System vol.9, pp.4, 2020, https://doi.org/10.12677/dsc.2020.94020