DOI QR코드

DOI QR Code

Structural behavior of CFRP strengthened concrete-filled steel tubes columns under axial compression loads

  • Received : 2012.06.05
  • Accepted : 2013.04.22
  • Published : 2013.05.25

Abstract

This paper presents the structural behavior of CFRP (carbon fiber reinforced polymer) strengthened CFT (concrete-filled steel tubes) columns under axial loads. Circular and square specimens were selected to investigate the retrofitting effects of CFRP sheet on CFT columns. Test parameters are cross section of CFT, D/t (B/t) ratios, and the number of CFRP layers. The load and ductility capacities were evaluated for each specimen. Structural behavior comparisons of circular and rectangular section will be represented in the experimental result discussion section. Finally, ultimate load formula of CFRP strengthened CFT will be proposed to calculate the ultimate strength of CFRP strengthened circular CFT. The prediction values are in good agreement with the test results obtained in this study and in the literature.

Keywords

Acknowledgement

Supported by : Ministry of Knowledge Economy

References

  1. AISC (2005), Steel Construction Manual, 2, (13th Edition), American Institute of Steel Construction.
  2. ACI 440R-96 (2002), Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures, ACI Committee 440.
  3. Bambach, M.R., Jema, H.H. and Elchalakani, M. (2009), "Axial capacity and design of thin-walled steel SHS strengthened with CFRP", Thin-Walled. Struct., 47(1), 1112-1121. https://doi.org/10.1016/j.tws.2008.10.006
  4. El-Tawil, S., Ekiz, E., Goel, S. and Chao, S.H. (2011), "Restraining local and global buckling behavior of steel plastic hinges CFRP", J. Construct. Steel. Res., 67(1), 261-269. https://doi.org/10.1016/j.jcsr.2010.11.007
  5. Fam, A., Macfougall, C. and Shaat, A. (2009), "Upgrading steel-concrete composite girders and repair of damaged steel Beams using bonded CFRP laminates", Thin-Walled. Struct., 47(1), 1122-1135 https://doi.org/10.1016/j.tws.2008.10.014
  6. Gu, W. Guan, C.W. Zhao, Y.H. and Cao. H. (2004), "Experimental study on concentrically-compressed circular concrete filled CFRP -steel composite tubular short columns", J. Shenyang Architect. Civil Eng. Univ., 20(2), 118-120.
  7. Harries, K.A. Peck, A.J. and Abraham, E.J. (2009), "Enhancing stability of structural steel sections using FRP", Thin-Walled. Struct., 47(1), 1092-1101. https://doi.org/10.1016/j.tws.2008.10.007
  8. Karbhari, V.M. and Gao, Y. (1997), "Composite jacketed concrete under uniaxial compression-verification of simple design equation", ASCE, J. Mater. in Civil Eng., 19(4), 185-193.
  9. Mander, J.B. Priestley, M.J. and Park, R. (1988), "Theorical stress-strain model for confined concrete", ASCE, J. Struct. Eng., 114(8), 1084-1826.
  10. Miller, T.C., Chajes, M.J., Mertz, D.R. and Hastings, J.N. (2001), "Strengthening of a steel bridge girder using CFRP plates", ASCE, J. Bridge. Eng., 6(6), 514-522. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(514)
  11. Narmashiri, K., Jumaat, M.Z. and Ramil Sulong, N.H. (2010), "Shear strengthening of steel I-beams by using CFRP strips", Scientific Research and Essays., 5(16), 2155-2168.
  12. Park, J.W., Hong, Y.K. and Choi, S.M. (2010), "Behavior of concrete filled square tubes confined by carbon fiber sheets (CFS) under compression and cyclic Loads", Steel Compos. Struct., Int. J., 8(2), 187-205.
  13. Sallam, H.E.M., Badawy, A.A.M., Saba, A.M. and Mikhail, F.A. (2010), "Flexural behavior of strengthened steel-concrete composite beams by various plating methods", J. Const. Steel. Res., 62(1), 472-483.
  14. Saffi, M., Toutanji, H.A. and Li, Z. (1999), "Behaviors of concrete columns confined with fiber reinforced Polymer tubes", ACI Materials Journal., 96(4), 500-509.
  15. Samaan, M., Mirmiran, A. and Shaawy, M. (1998), "Model of concrete confined by fiber composites", ASCE, J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
  16. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", ASCE, J. Struct. Eng., 121(10), 1125-1138.
  17. Schnerch, D., Danwood. M., Rizkalla. S. and Sumner, E. (2007), "Proposed design guidelines for strengthening of steel bridges with FRP Materials", Const. Build. Mater., 21(5), 1001-1010. https://doi.org/10.1016/j.conbuildmat.2006.03.003
  18. Schnerch, D. and Rizkalla. S. (2008), "Flexural strengthening of steel bridges with high modulus CFRP strips", ASCE, J. Bridge. Eng., 13(2), 192-201. https://doi.org/10.1061/(ASCE)1084-0702(2008)13:2(192)
  19. Shaat, A. and Fam, A.Z. (2009), "Slender steel columns strengthened using high-modulus CFRP plates for buckling control", ASCE, J. Compo. Const., 13(1), 1-12. https://doi.org/10.1061/(ASCE)1090-0268(2009)13:1(1)
  20. Tao, Z., Han, L.H. and Wang, L.L. (2007a), "Axial loading behaviors of CFRP strengthened concrete-filled steel tubular stub columns", Adv. Struct. Eng., 10(1), 37-46. https://doi.org/10.1260/136943307780150814
  21. Tao, Z., Han, L.H. and Wang, L.L. (2007b), "Compressive and flexural behavior of CFRP-repaired concrete-filled steel tubes after exposure to fire", J. Cons. Steel. Res., 63(8), 1116-1126. https://doi.org/10.1016/j.jcsr.2006.09.007
  22. Teng, J.G. and Hu, Y.M. (2007), "Behavior of FRP-jacked circular steel tubes and cylindrical shells under axial compression", Const. Build. Mater., 21(3), 827-838. https://doi.org/10.1016/j.conbuildmat.2006.06.016
  23. Xiao, Y., He, W. and Choi, K.K. (2005), "Confined concrete-filled tubular columns", ASCE, J. Struct. Eng., 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488)

Cited by

  1. Vertical Dynamic Response of a Concrete Filled Steel Tube due to Transient Impact Load: Analytical Solution vol.16, pp.01, 2016, https://doi.org/10.1142/S0219455416400149
  2. Strengthening of steel hollow pipe sections subjected to transverse loads using CFRP vol.60, pp.1, 2016, https://doi.org/10.12989/sem.2016.60.1.163
  3. Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.441
  4. Wave propagation in a concrete filled steel tubular column due to transient impact load vol.17, pp.6, 2014, https://doi.org/10.12989/scs.2014.17.6.891
  5. Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model vol.21, pp.4, 2016, https://doi.org/10.12989/scs.2016.21.4.921
  6. The enhanced performance of CFST beams using different strengthening schemes involving unidirectional CFRP sheets: An experimental study vol.128, 2016, https://doi.org/10.1016/j.engstruct.2016.09.044
  7. Composite action of notched circular CFT stub columns under axial compression vol.24, pp.3, 2013, https://doi.org/10.12989/scs.2017.24.3.309
  8. Mechanical behavior of elliptical concrete-filled steel tubular stub columns under axial loading vol.25, pp.3, 2013, https://doi.org/10.12989/scs.2017.25.3.375
  9. Behavior of polygonal concrete-filled steel tubular stub columns under axial loading vol.28, pp.5, 2013, https://doi.org/10.12989/scs.2018.28.5.573
  10. Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2013, https://doi.org/10.12989/acc.2018.6.5.485
  11. Behavior of Circular Fiber-Reinforced Polymer-Steel-Confined Concrete Columns Subjected to Reversed Cyclic Loads: Experimental Studies and Finite-Element Analysis vol.145, pp.9, 2019, https://doi.org/10.1061/(asce)st.1943-541x.0002373
  12. Experimental investigations of concrete-filled steel tubular columns confined with high-strength steel wire vol.22, pp.13, 2013, https://doi.org/10.1177/1369433219850645
  13. Monotonic axial compressive behaviour and confinement mechanism of square CFRP-steel tube confined concrete vol.217, pp.None, 2013, https://doi.org/10.1016/j.engstruct.2020.110802
  14. Static strength of CFRP-strengthened tubular TT-joints containing initial local corrosion defect vol.236, pp.None, 2013, https://doi.org/10.1016/j.oceaneng.2021.109484
  15. Compression Performance of Square Steel Tubular Members Externally Enfolded with Carbon Fiber-Reinforced Polymer Sheet vol.27, pp.2, 2013, https://doi.org/10.1061/(asce)sc.1943-5576.0000664