References
- Afshar, M.H. and Motaei, I. (2011), "Constrained big bang-big crunch algorithm for optimal solution of large scale reservoir operation problem", Int. J. Optim. Civil. Eng., 1(2), 357-375.
- Almusallam, T.H. (1995), "Effect of connection flexibility on the optimum design of steel frames", Proceedings of International Conference of Developments in Computational Techniques for Civil Engineering, Edinburgh, UK, August.
- Alsalloum, Y.A. and Almusallam, T.H. (1995), "Optimality and safety of rigidly-jointed and flexibly-jointed steel frames", J. Constr. Steel Res., 35(2), 189-215. https://doi.org/10.1016/0143-974X(94)00043-H
- American Institute of Steel Construction (AISC), (1995), Manual of Steel Construction-Load and Resistance Factor Design, Chicago, IL.
- Chen, W.F., Goto, Y. and Liew, J.Y.R. (1996), Stability design of semi-rigid frames, John Wiley & Sons Inc., New York.
- Davison, J.H. and Adams, P.F. (1974), "Stability of braced and unbraced frames", J. Struct. Div. ASCE, 100(2), 319-334.
- Degertekin, S.O. and Hayalioglu, M.S. (2010), "Harmony search algorithm for minimum cost design of steel frames with semi-rigid connections and column bases", Struct. Multidisc. Optim., 42(5),755-768. https://doi.org/10.1007/s00158-010-0533-7
- Erol, O.K. and Eksin, I. (2006), "A new optimization method: Big Bang-Big Crunch", Adv. Eng. Software, 37(2), 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
- Faella, C., Piluso, V. and Rizzano, G. (2000), Structural steel semi-rigid connections, CRC press, Boca Raton.
- Frye, M.J. and Morris, G.A. (1975), "Analysis of frames with flexible connected steel frames", Can. J. Civ. Eng., 2(3), 280-291. https://doi.org/10.1139/l75-026
- Gorgun, H. and Yilmaz, S. (2012) "Geometrically nonlinear analysis of plane frames with semi-rigid connections accounting for shear deformations", Struct. Eng. Mech., Int. J., 44(4), 539-569. https://doi.org/10.12989/sem.2012.44.4.539
- Hasancebi O., Carbas S., Dogan E., Erdal F., Saka M.P. (2010), "Comparison of non-deterministic search techniques in the optimum design of real size steel frames", Comput. Struct., 88(17-18), 1033-1048. https://doi.org/10.1016/j.compstruc.2010.06.006
- Hayalioglu, M.S. and Degertekin, S.O. (2005), "Minimum cost design of steel frames with semi-rigid connections and column bases via genetic optimization", Comput. Struct., 83(21-22), 1849-1863. https://doi.org/10.1016/j.compstruc.2005.02.009
- Kameshki, E.S. and Saka, M.P. (2003), "Genetic algorithm based optimum design of nonlinear planar steel frames with various semi-rigid connections", J. Constr. Steel Res., 59(1), 109-134. https://doi.org/10.1016/S0143-974X(02)00021-4
- Kaveh, A. and Talatahari, S. (2009a), "Size optimization of space trusses using Big Bang-Big Crunch algorithm", Comput. Struct., 87(17-18), 1129-1140. https://doi.org/10.1016/j.compstruc.2009.04.011
- Kaveh, A. and Talatahari, S. (2009b), "Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures", Comput. Struct., 87(5-6), 267-283. https://doi.org/10.1016/j.compstruc.2009.01.003
- Kaveh, A. and Talatahari, S. (2010a), "Optimal design of skeletal structures via the charged system search algorithm", Struct. Multidisc. Optim., 41(6), 893-911. https://doi.org/10.1007/s00158-009-0462-5
- Kaveh, A. and Talatahari, S. (2010b), "A discrete Big Bang-Big Crunch algorithm for optimal design of skeletal structures", Asian J. Civil Eng., 11(1), 103-122.
- Kaveh, A. and Talatahari, S. (2010c), "Optimal design of schwedler and ribbed domes via hybrid Big Bang-Big Crunch alghoritm", J. Constr. Steel Res., 66(3), 412-419. https://doi.org/10.1016/j.jcsr.2009.10.013
- Kishi, N., Chen, W.F. and Goto, Y. (1997), "Effective length factor of columns in semi-rigid and unbraced frames", J. Struct. Eng. ASCE, 123(3), 313-320. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:3(313)
- Li, T.Q., Nethercot, D.A. and Tizani, W.M.K. (1997), "Integrated design system for semi-rigidly connected steel frames", J. Adv. Struct. Eng., 1(1), 47-61. https://doi.org/10.1177/136943329700100106
- Lui, E.M. and Chen, W.F. (1986), "Analysis and behavior of flexibly-jointed frames", Eng. Struct., 8(2), 107-118. https://doi.org/10.1016/0141-0296(86)90026-X
- Rajeev, S. and Krishnamoorthy, C.S. (1992), "Discrete optimization of structures using genetic algorithms", J. Struct. Eng. ASCE, 118(5), 1233-1250. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)
- Simoes, L.M.C. (1996), "Optimization of frames with semi-rigid connections", Comput. Struct., 60(4), 531-539. https://doi.org/10.1016/0045-7949(95)00427-0
- Tang, H., Zhou, J., Xue, S. and Xie, L. (2010), "Big bang-big crunch optimization for parameter estimation in structural systems", Mech. Syst. Signal. Proc., 24(8), 2888-2897. https://doi.org/10.1016/j.ymssp.2010.03.012
-
Valipour, H.R., and Bradford, M.A. (2013), "Nonlinear P-
$\Delta$ analysis of steel frames with semi-rigid connections", Steel Compos. Struct., Int. J., 14(1), 1-20. https://doi.org/10.12989/scs.2013.14.1.001 - Xu, L. and Grierson, D.E. (1993), "Computer automated design of semi-rigid steel frameworks", J. Struct. Eng. ASCE, 119(6), 1740-1760. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1740)
Cited by
- An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions vol.55, pp.5, 2015, https://doi.org/10.12989/sem.2015.55.5.979
- On the progressive collapse resistant optimal seismic design of steel frames vol.60, pp.5, 2016, https://doi.org/10.12989/sem.2016.60.5.761
- Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames vol.50, pp.3, 2014, https://doi.org/10.12989/sem.2014.50.3.323
- Optimum design of steel frames with semi-rigid connections and composite beams vol.55, pp.2, 2015, https://doi.org/10.12989/sem.2015.55.2.299
- A new hybrid algorithm for simultaneous size and semi-rigid connection type optimization of steel frames vol.15, pp.1, 2015, https://doi.org/10.1007/s13296-015-3006-4
- Seismic response of 3D steel buildings with hybrid connections: PRC and FRC vol.22, pp.1, 2016, https://doi.org/10.12989/scs.2016.22.1.113
- Reliability-based design of semi-rigidly connected base-isolated buildings subjected to stochastic near-fault excitations vol.11, pp.4, 2016, https://doi.org/10.12989/eas.2016.11.4.701
- Optimum design of steel space frames with composite beams using genetic algorithm vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.503
- Optimum design of steel space frames under earthquake effect using harmony search vol.58, pp.3, 2016, https://doi.org/10.12989/sem.2016.58.3.597
- Optimum design of braced steel frames via teaching learning based optimization vol.22, pp.4, 2016, https://doi.org/10.12989/scs.2016.22.4.733
- Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames vol.19, pp.2, 2015, https://doi.org/10.12989/scs.2015.19.2.467
- Optimum design of steel space frames including soil-structure interaction vol.54, pp.1, 2016, https://doi.org/10.1007/s00158-016-1401-x
- Seismic response and energy dissipation of 3D complex steel buildings considering the influence of interior semi-rigid connections: low- medium- and high-rise vol.16, pp.11, 2018, https://doi.org/10.1007/s10518-018-0405-x
- Design of steel frames by an enhanced moth-flame optimization algorithm vol.24, pp.1, 2013, https://doi.org/10.12989/scs.2017.24.1.129
- Optimum design of steel bridges including corrosion effect using TLBO vol.63, pp.5, 2013, https://doi.org/10.12989/sem.2017.63.5.607
- Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity vol.25, pp.1, 2017, https://doi.org/10.12989/scs.2017.25.1.001
- A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms vol.66, pp.2, 2013, https://doi.org/10.12989/sem.2018.66.2.173
- Design optimization of semi-rigid space steel frames with semi-rigid bases using biogeography-based optimization and genetic algorithms vol.70, pp.2, 2013, https://doi.org/10.12989/sem.2019.70.2.221
- A research on optimum designs of steel frames including soil effects or semi rigid supports using Jaya algorithm vol.73, pp.2, 2020, https://doi.org/10.12989/sem.2020.73.2.153
- A new second-order approximation method for optimum design of structures vol.19, pp.1, 2013, https://doi.org/10.1080/14488353.2020.1798039
- Comparison of three novel hybrid metaheuristic algorithms for structural optimization problems vol.244, pp.None, 2013, https://doi.org/10.1016/j.compstruc.2020.106395
- Performance of Jaya algorithm in optimum design of cold-formed steel frames vol.40, pp.6, 2021, https://doi.org/10.12989/scs.2021.40.6.795