DOI QR코드

DOI QR Code

Characterization of CO2 Gasification of 17 Coals With Regard to Coal Rank

다양한 등급의 17종 석탄의 CO2 가스화 반응특성 연구

  • Kim, Soohyun (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Yoo, Jiho (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Chun, Donghyuk (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Lee, Sihyun (Clean Fuel Department, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Graduate school of Green Energy Technology, Chungnam National University)
  • 김수현 (한국에너지기술연구원 청정연료연구단) ;
  • 유지호 (한국에너지기술연구원 청정연료연구단) ;
  • 전동혁 (한국에너지기술연구원 청정연료연구단) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구단) ;
  • 이영우 (충남대학교 녹색에너지기술전문대학원)
  • Received : 2013.07.31
  • Accepted : 2013.09.04
  • Published : 2013.09.30

Abstract

This paper presents results on $CO_2$ gasification of 17 raw coals containing a wide range of volatile matter (21-57 wt%). The gasification is performed using a TGA under $CO_2$ and also under $N_2$ atmosphere. An amount of weight loss with increasing temperature is proportional to that of volatile matter in a coal under $N_2$ atmosphere. Reactivity of $CO_2$ gasification also increases with a content of volatile matter. However, the correlation is a little scattered. Oxygenated functional groups in a coal are generally reactive and therefore, an increase in O/C ratio leads to enhanced reactivity. However, $CO_2$ reactivity is affected by neither H/C ratio nor a content of ashes that possibly activate the gasification reaction. These findings are also applicable to steam coal gasification and the reactivity series are confirmed in the test at a fixed bed reactor.

휘발분 21~57 wt%를 포함하는 17종의 다양한 등급의 석탄에 대하여 $CO_2$ 가스화 반응을 수행하였다. TGA를 이용하여 $CO_2$ 가스화 반응을 실시한 후 열분해 조건($N_2$)에서의 거동과 비교하였다. $N_2$ 분위기에서 온도 증가에 따른 무게 감량은 석탄 내 휘발분 함량에 비례하였고, $CO_2$가스화 반응성도 휘발분 증가에 따라 증가하였으나 열분해 대비 분산된 모습을 보였다. 석탄 내 산소 기능기들은 상대적으로 반응성이 크며, 이에 따라 O/C 비율의 증가는 $CO_2$ 가스화 반응성의 증가로 나타났다. 하지만 H/C 비율 및 가스화 반응의 촉매 역할을 담당할 수 있는 회분의 함량은 $CO_2$ 반응성과 유의할만한 상관관계를 나타내지 않았다. 이러한 반응 특징은 수증기 가스화 반응과 유사하였으며 고정층 반응기에서 얻어진 $CO_2$ 가스화 결과와 일치하였다.

Keywords

References

  1. Longwell, J. P., Rubin, E. S., and Wilson, J., "Coal: Energy for the future," Prog. Energy Combust. Sci., 21, 269-360, (1995). https://doi.org/10.1016/0360-1285(95)00007-0
  2. 2012 World Energy Outlook, IEA (2012).
  3. "전력통계정보시스템," https://epsis.kpx.or.kr (2013).
  4. 2011 World Energy Outlook, IEA (2011).
  5. Burnham, A., Han, J. W., Clark, C. E., Wang, M., Dunn, J. B., and Palou-Rivera, I., "Life-Cycle Greenhouse Gas Emission of Shale Gas, Natural Gas, Coal, and Petroleum," Environ. Sci. Technol., 46, 619-627 (2012). https://doi.org/10.1021/es201942m
  6. Springer, "Cleaner Combustion and Sustainable World," Germany, 2013, pp. 11-18.
  7. Skorek-O. A., Kotowicz, J., and Janusz-S, K., "Comparison of the Energy Intensity of the Selected $CO_2$-Capture Methods Applied in the Ultra-supercritical Coal Power Plants" Energy Fuels, 26, 6509-6517 (2012). https://doi.org/10.1021/ef201687d
  8. Li, J., and Liang, X., "$CO_2$ capture modeling for pulverised coal-fired power plants: A case study of an existing 1 GW ultra-supercritical power plant in Shandong, China," Sep. Purif. Technol., 94, 138-145 (2012). https://doi.org/10.1016/j.seppur.2011.09.044
  9. Shoko, E., McLellan, B., Dicks, A.L., and Diniz, J.C., "Hydrogen from coal: Production and utilization technologies," Int. J. Coal Geol., 65, 213-222 (2006). https://doi.org/10.1016/j.coal.2005.05.004
  10. Ordorica-Garcia, G., Douglas, P., Croiset, E., and Zheng, L., "Techno economic evaluation of IGCC power plants for $CO_2$ avoidance," Energy Conv. Manag., 47, 2250-2259 (2006). https://doi.org/10.1016/j.enconman.2005.11.020
  11. Collot, A., "Matching gasification technologies to coal properties," Int. J. Coal Geol., 65, 191-212 (2006). https://doi.org/10.1016/j.coal.2005.05.003
  12. Ball, M., and Wietschel, M., "The future of hydrogen-opportunities and challenges," Int. J. Hydrog. Energy, 34, 615-627 (2009). https://doi.org/10.1016/j.ijhydene.2008.11.014
  13. Majoumerd, M., De, S., Assadi, M., and Breuhaus, P., "An EU initiative for future generation of IGCC power plants using hydrogen-rich syngas : Simulation results for the baseline configuration," Appl. Energy, 99, 280-290 (2012). https://doi.org/10.1016/j.apenergy.2012.05.023
  14. Higman, C., and Burgt, M., "Gasification" 2nd ed., Gulf Professional Publishing, Amsterdam, 2008, pp 1-87.
  15. Shinya, Y., Jun, M., Yukitoshi, H., Osamu Y., and Yutaka, T., "Coal/$CO_2$ Gasification System Using Molten Carbonate Salt for Solar/Fossil Energy Hybridization," Energy Fuels, 13, 961-964 (1999). https://doi.org/10.1021/ef980144n
  16. Moulijn, J. A., and Kapteun, F., "Toward a unified theory of reactions of carbon with oxygen-containing molecules," Carbon, 33, 1155-1165 (1995). https://doi.org/10.1016/0008-6223(95)00070-T
  17. Ratnasamy, C., and Wagner, J. P., "Water Gas Shift Catalysis," Taylor & Francis Group, UK, 2009, pp. 325-341.
  18. Li, L., Zhao, N., Wei, W., and Sun, Y., "A review of research progress on $CO_2$ capture, storage, and utilization in Chinese Academy of Sciences," Fuel, 108, 112-130 (2013). https://doi.org/10.1016/j.fuel.2011.08.022
  19. Ye, D. P., Agnew, J. B., and Zhang, D. K., "Gasification of a South Australian low rank coal with carbon dioxide and steam: kinetics and reactivity studies," Fuel, 77, 1209-1219 (1998). https://doi.org/10.1016/S0016-2361(98)00014-3
  20. Beamish, B. B., Shaw, K. J., Rodgers, K. A., and Newman, J., "Thermo-gravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal," Fuel Process. Technol., 53, 243-253 (1998). https://doi.org/10.1016/S0378-3820(97)00073-8
  21. Taylor, H. S., and Neville, H. A., "Catalysis in the interaction of carbon with steam and with carbon dioxide," J. Am. Chem. Soc., 43, 2055-2071 (1921). https://doi.org/10.1021/ja01442a009
  22. Roberts, D. G., and Harris, D. J., "Char gasification in mixtures of $CO_2\;and\;H_2O$ : Competition and inhibition," Fuel, 86, 2672-2678 (2007). https://doi.org/10.1016/j.fuel.2007.03.019
  23. Takayuki, T., Yasukatsu T., and Akira, T., "Reactivities of 34 coals under steam gasification," Fuel, 64, 1438-1442 (1985). https://doi.org/10.1016/0016-2361(85)90347-3
  24. Yoshiyuki, N., "Catalytic gasification of coals-Features and possibilities," Fuel, 29, 31-42 (1991).
  25. Kim, J. H., and Son, E. K., "Study on air pollution reduction technologies of clean gas fuel(2)," KIER-982217, 1998.
  26. Duan, L., Zhao, C., Zhou, Wu., Qu, C., and Chen, X., "Investigation on Coal Pyrolysis in $CO_2$ Atmosphere," Energy Fuels, 23, 3826-3830 (2009). https://doi.org/10.1021/ef9002473
  27. Samaras, P., Diamadopoulos, E., and Sakellaropoulos, G. P., "The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide," Fuel, 75, 1108-1114 (1996). https://doi.org/10.1016/0016-2361(96)00058-0
  28. Walker, P. L., "Structure of coals and their conversion to gaseous fuels," Fuel, 60, 801-802 (1981). https://doi.org/10.1016/0016-2361(81)90141-1
  29. Li, C., "Some recent advances in the understanding of the pyrolysis and gasification behavior of Victorian brown coal," Fuel, 86, 1664-1683 (2007). https://doi.org/10.1016/j.fuel.2007.01.008
  30. Lothar K., and Horst P., "Reaction of catalysts with mineral matter during coal gasification," Fuel, 62, 205-208 (1983). https://doi.org/10.1016/0016-2361(83)90199-0
  31. Fidel C., and Jonathan P. M., "Constitution of Illinois No. 6 Argonne Premium Coal: A review," Energy Fuels, 25, 845-853 (2011). https://doi.org/10.1021/ef1015846
  32. Wu, S., Gu, J., Zhang, X., Wu, Y., and Gao, J., "Variation of Carbon Crystalline Structures and $CO_2$ Gasification Reactivity of Shenfu Coal Chars at Elevated Temperatures," Energy Fuels, 22, 199-206 (2008). https://doi.org/10.1021/ef700371r
  33. Plante, P., Roy, C., and Chornet, E., "$CO_2$ gasification of wood charcoals derived from vacuum and atmospheric pyrolysis," Can. J. Chem. Eng., 66, 307-312 (1988). https://doi.org/10.1002/cjce.5450660219
  34. Peralta, D., Paterson, N., Dugwell, D., and Kandiyoti, R., "Pyrolysis and $CO_2$ Gasification on Chinese Coals in a High-Pressure Wire-Mesh Reactor under Conditions Relevant to Entrained-Flow Gasification," Energy Fuels, 19, 532-537 (2005). https://doi.org/10.1021/ef049762w

Cited by

  1. Steam Gasification of Thermally Extracted Ash-Free Coals: Reactivity Effects Due to Parent Raw Coals and Extraction Solvents vol.31, pp.10, 2017, https://doi.org/10.1021/acs.energyfuels.7b01502